Skip to main content
Log in

Noncanonical Activity of Endocannabinoids and Their Receptors in Central and Peripheral Synapses

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review focuses on new aspects of endocannabinoid functions and mechanisms of activity in central and peripheral synapses, different from the general viewpoint that endocannabinoids are retrograde signaling molecules, which inhibit neurotransmitter release by activating specific presynaptic endocannabinoid receptors CB1 and CB2. Biased agonism of the endogenous and synthetic cannabinoids as well as ability of the CB-receptors to couple not only with classical Gi-proteins, but also with Gs- and Gq-proteins and, moreover, with β-arrestins (thereby triggering additional signaling pathways in synapses) are described here in detail. Examples of noncanonical tonic activity of endocannabinoids and their receptors and their role in synaptic function are also presented. The role of endocannabinoids in short-term and long-term potentiation of neurotransmitter release in central synapses and their facilitating effect on quantal size and other parameters of acetylcholine release in mammalian neuromuscular junctions are highlighted in this review. In conclusion, it is stated that the endocannabinoid system has a wider range of various multidirectional modulating effects (both potentiating and inhibiting) on neurotransmitter release than initially recognized. Re-evaluation of the functions of endocannabinoid system with consideration of its noncanonical features will lead to better understanding of its role in the normal and pathological functioning of the nervous system and other systems of the body, which has an enormous practical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

2-AG:

2-arachidonoylglycerol

AC:

adenylate cyclase

ACh:

acetylcholine

AEA:

N-arachidonoylethanolamine (anandamide)

CB:

cannabinoid receptors

DAG:

diacylglycerol

DAGLα:

diacylglycerol lipase α

DSE:

depolarization-induced suppression of excitation

DSI:

depolarization-induced suppression of inhibition

GABA:

gamma-aminobutyric acid

LTD:

long-term depression

LTP:

long-term potentiation

MAPK:

mitogen-activated protein kinase

PKA:

proteinkinase A

PLC:

phospholipase C

THC:

tetrahydrocannabinol

WIN:

(R)-(+)-[2,3-Dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate salt

References

  1. Morales, P., and Reggio, P. H. (2017) An update on Non-CB1, Non-CB2 cannabinoid related G-protein-coupled receptors, Cannabis Cannabinoid Res., 2, 265-273, https://doi.org/10.1089/can.2017.0036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zou, S., and Kumar, U. (2018) Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system, Int. J. Mol. Sci., 19, 833, https://doi.org/10.3390/ijms19030833.

    Article  CAS  PubMed Central  Google Scholar 

  3. Haspula, D., and Clark, M. A. (2020) Cannabinoid receptors: an update on cell signaling, pathophysiological roles and therapeutic opportunities in neurological, cardiovascular, and inflammatory diseases, Int. J. Mol. Sci., 21, 7693, https://doi.org/10.3390/ijms21207693.

    Article  CAS  PubMed Central  Google Scholar 

  4. Muller, C., Morales, P., and Reggio, P. H. (2019) Cannabinoid ligands targeting TRP channels, Front. Mol. Neurosci., 11, 487, https://doi.org/10.3389/fnmol.2018.00487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lago-Fernandez, A., Zarzo-Arias, S., Jagerovic, N., and Morales, P. (2021) Relevance of peroxisome proliferator activated receptors in multitarget paradigm associated with the endocannabinoid system, Int. J. Mol. Sci., 22, 1001, https://doi.org/10.3390/ijms22031001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M., and Watanabe, M. (2009) Endocannabinoid-mediated control of synaptic transmission, Physiol. Rev., 89, 309-380, https://doi.org/10.1152/physrev.00019.2008.

    Article  CAS  PubMed  Google Scholar 

  7. Castillo, P. E., Younts, T. J., Chávez, A. E., and Hashimotodani, Y. (2012) Endocannabinoid signaling and synaptic function, Neuron, 76, 70-81, https://doi.org/10.1016/j.neuron.2012.09.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rozov, A. V., Valiullina, F. F., and Bolshakov, A. P. (2017) Mechanisms of long-term plasticity of hippocampal GABAergic synapses, Biochemistry (Moscow), 82, 257-263, https://doi.org/10.1134/S0006297917030038.

    Article  CAS  Google Scholar 

  9. Turu, G., and Hunyady, L. (2010) Signal transduction of the CB1 cannabinoid receptor, J. Mol. Endocrinol., 44, 75-85, https://doi.org/10.1677/JME-08-0190.

    Article  CAS  PubMed  Google Scholar 

  10. Dalton, G. D., and Howlett, A. C. (2012) Cannabinoid CB1 receptors transactivate multiple receptor tyrosine kinases and regulate serine/threonine kinases to activate ERK in neuronal cells, Br. J. Pharmacol., 165, 2497-2511, https://doi.org/10.1111/j.1476-5381.2011.01455.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kreitzer, A. C., and Regehr, W. G. (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells, Neuron, 29, 717-727, https://doi.org/10.1016/S0896-6273(01)00246-X.

    Article  CAS  PubMed  Google Scholar 

  12. Fletcher-Jones, A., Hildick, K. L., Evans, A. J., Nakamura, Y., Henley, J. M., and Wilkinson, K. A. (2020) Protein interactors and trafficking pathways that regulate the cannabinoid type1 receptor (CB1R), Front. Mol. Neurosci., 13, 108, https://doi.org/10.3389/fnmol.2020.00108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Augustin, S. M., and Lovinger, D. M. (2018) Functional relevance of endocannabinoid-dependent synaptic plasticity in the central nervous system, ACS Chem. Neurosci., 9, 2146-2161, https://doi.org/10.1021/acschemneuro.7b00508.

    Article  CAS  PubMed  Google Scholar 

  14. Huang, G. Z., and Woolley, C. S. (2012) Estradiol acutely suppresses inhibition in the hippocampus through a sex-specific endocannabinoid and mGluR-dependent mechanism, Neuron, 74, 801-808, https://doi.org/10.1016/j.neuron.2012.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tabatadze, N., Huang, G., May, R. M., Jain, A., and Woolley, C. S. (2015) Sex differences in molecular signaling at inhibitory synapses in the hippocampus, J. Neurosci., 35, 11252-11265, https://doi.org/10.1523/JNEUROSCI.1067-15.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A., and Kano, M. (2001) Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors, Neuron, 31, 463-475, https://doi.org/10.1016/S0896-6273(01)00375-0.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, J., Isokawa, M., Ledent, C., and Alger, B. E. (2002) Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus, J. Neurosci., 22, 10182-10191, https://doi.org/10.1523/jneurosci.22-23-10182.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Straiker, A., and Mackie, K. (2007) Metabotropic suppression of excitation in murine autaptic hippocampal neurons, J. Physiol., 578, 773-785, https://doi.org/10.1113/jphysiol.2006.117499.

    Article  CAS  PubMed  Google Scholar 

  19. Ohno-Shosaku, T., and Kano, M. (2014) Endocannabinoid-mediated retrograde modulation of synaptic transmission, Curr. Opin. Neurobiol., 29, 1-8, https://doi.org/10.1016/j.conb.2014.03.017.

    Article  CAS  PubMed  Google Scholar 

  20. Varma, N., Carlson, G. C., Ledent, C., and Alger, B. E. (2001) Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus, J. Neurosci., 21, RC188, https://doi.org/10.1523/jneurosci.21-24-j0003.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ohno-Shosaku, T., Matsui, M., Fukudome, Y., Shosaku, J., Tsubokawa, H., Taketo, M. M., et al. (2003) Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus, Eur. J. Neurosci., 18, 109-116, https://doi.org/10.1046/j.1460-9568.2003.02732.x.

    Article  PubMed  Google Scholar 

  22. Hashimotodani, Y., Ohno-Shosaku, T., Watanabe, M., and Kano, M. (2007) Roles of phospholipase Cβ and NMDA receptor in activity-dependent endocannabinoid release, J. Physiol., 584, 373-380, https://doi.org/10.1113/jphysiol.2007.137497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramikie, T. S., Nyilas, R., Bluett, R. J., Gamble-George, J. C., Hartley, N. D., et al. (2014) Multiple mechanistically distinct modes of endocannabinoid mobilization at central amygdala glutamatergic synapses, Neuron, 81, 1111-1125, https://doi.org/10.1016/j.neuron.2014.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Colmers, P. L. W., and Bains, J. S. (2018) Presynaptic mGluRs control the duration of endocannabinoid-mediated DSI, J. Neurosci., 38, 10444-10453, https://doi.org/10.1523/JNEUROSCI.1097-18.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohno-Shosaku, T., Tanimura, A., Hashimotodani, Y., and Kano, M. (2012) Endocannabinoids and retrograde modulation of synaptic transmission, Neuroscientist, 18, 119-132, https://doi.org/10.1177/1073858410397377.

    Article  CAS  PubMed  Google Scholar 

  26. Chevaleyre, V., Takahashi, K. A., and Castillo, P. E. (2006) Endocannabinoid-mediated synaptic plasticity in the CNS, Annu. Rev. Neurosci., 29, 37-76, https://doi.org/10.1146/annurev.neuro.29.051605.112834.

    Article  CAS  PubMed  Google Scholar 

  27. Lutz, B. (2020) Neurobiology of cannabinoid receptor signaling, Dialogues Clin. Neurosci., 22, 207-222, https://doi.org/10.31887/DCNS.2020.22.3/blutz.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Katona, I., and Freund, T. F. (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease, Nat. Med., 14, 923-930, https://doi.org/10.1038/nm.f.1869.

    Article  CAS  PubMed  Google Scholar 

  29. Cristino, L., Bisogno, T., and Di Marzo, V. (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders, Nat. Rev. Neurol., 16, 9-29, https://doi.org/10.1038/s41582-019-0284-z.

    Article  PubMed  Google Scholar 

  30. Piomelli, D. (2003) The molecular logic of endocannabinoid signalling, Nat. Rev. Neurosci., 4, 873-884, https://doi.org/10.1038/nrn1247.

    Article  CAS  PubMed  Google Scholar 

  31. Hashimotodani, Y., Ohno-Shosaku, T., Tanimura, A., Kita, Y., Sano, Y., Shimizu, T., et al. (2013) Acute inhibition of diacylglycerol lipase blocks endocannabinoid-mediated retrograde signalling: evidence for on-demand biosynthesis of 2-arachidonoylglycerol, J. Physiol., 591, 4765-4776, https://doi.org/10.1113/jphysiol.2013.254474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richardson, J. D. (2000) Cannabinoids modulate pain by multiple mechanisms of action, J. Pain, 1, 2-14, https://doi.org/10.1016/S1526-5900(00)90082-8.

    Article  Google Scholar 

  33. Howlett, A. C., Reggio, P. H., Childers, S. R., Hampson, R. E., Ulloa, N. M., and Deutsch, D. G. (2011) Endocannabinoid tone versus constitutive activity of cannabinoid receptors, Br. J. Pharmacol., 163, 1329-1343, https://doi.org/10.1111/j.1476-5381.2011.01364.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, S. H., Ledri, M., Tóth, B., Marchionni, I., Henstridge, C. M., Dudok, B., et al. (2015) Multiple forms of endocannabinoid and endovanilloid signaling regulate the tonic control of GABA release, J. Neurosci., 35, 10039-10057, https://doi.org/10.1523/JNEUROSCI.4112-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kenakin, T. P. (2004) Allosteric modulators: the new generation of receptor antagonist, Mol. Interv., 4, 222-229, https://doi.org/10.1124/mi.4.4.6.

    Article  CAS  PubMed  Google Scholar 

  36. Szabó, G. G., Lenkey, N., Holderith, N., Andrási, T., Nusser, Z., and Hájos, N. (2014) Presynaptic calcium channel inhibition underlies CB1 cannabinoid receptor-mediated suppression of GABA release, J. Neurosci., 34, 7958-7963, https://doi.org/10.1523/JNEUROSCI.0247-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pertwee, R. G. (2005) Inverse agonism and neutral antagonism at cannabinoid CB1 receptors, Life Sci., 76, 1307-1324, https://doi.org/10.1016/j.lfs.2004.10.025.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, J., and Alger, B. E. (2010) Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses, Nat. Neurosci., 13, 592-600, https://doi.org/10.1038/nn.2517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thibault, K., Carrel, D., Bonnard, D., Gallatz, K., Simon, A., Biard, M., et al. (2013) Activation-dependent subcellular distribution patterns of CB1 cannabinoid receptors in the rat forebrain, Cereb. Cortex, 23, 2581-2591, https://doi.org/10.1093/cercor/bhs240.

    Article  PubMed  Google Scholar 

  40. Manza, P., Yuan, K., Shokri-Kojori, E., Tomasi, D., and Volkow, N. D. (2020) Brain structural changes in cannabis dependence: association with MAGL, Mol. Psychiatry, 25, 3256-3266, https://doi.org/10.1038/s41380-019-0577-z.

    Article  CAS  PubMed  Google Scholar 

  41. Tanimura, A., Yamazaki, M., Hashimotodani, Y., Uchigashima, M., Kawata, S., Abe, M., et al. (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission, Neuron, 65, 320-327, https://doi.org/10.1016/j.neuron.2010.01.021.

    Article  CAS  PubMed  Google Scholar 

  42. Ruiu, S., Pinna, G. A., Marchese, G., Mussinu, J. M., Saba, P., Tambaro, S., et al. (2003) Synthesis and characterization of NESS 0327: a novel putative antagonist of the CB1 cannabinoid receptor, J. Pharmacol. Exp. Ther., 306, 363-370, https://doi.org/10.1124/jpet.103.049924.

    Article  CAS  PubMed  Google Scholar 

  43. Canals, M., and Milligan, G. (2008) Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed μ-opioid receptors, J. Biol. Chem., 283, 11424-11434, https://doi.org/10.1074/jbc.M710300200.

    Article  CAS  PubMed  Google Scholar 

  44. Hillard, C. J. (2018) Circulating endocannabinoids: from whence do they come and where are they going? Neuropsychopharmacology, 43, 155-172, https://doi.org/10.1038/npp.2017.130.

    Article  CAS  PubMed  Google Scholar 

  45. Chen, K., Ratzliff, A., Hilgenberg, L., Gulyás, A., Freund, T. F., et al. (2003) Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures, Neuron, 39, 599-611, https://doi.org/10.1016/S0896-6273(03)00499-9.

    Article  CAS  PubMed  Google Scholar 

  46. Dvorzhak, A., Semtner, M., Faber, D. S., and Grantyn, R. (2013) Tonic mGluR5/CB1-dependent suppression of inhibition as a pathophysiological hallmark in the striatum of mice carrying a mutant form of huntingtin, J. Physiol., 591, 1145-1166, https://doi.org/10.1113/jphysiol.2012.241018.

    Article  CAS  PubMed  Google Scholar 

  47. Földy, C., Malenka, R. C., and Südhof, T. C. (2013) Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling, Neuron, 78, 498-509, https://doi.org/10.1016/j.neuron.2013.02.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alger, B. E., and Kim, J. (2011) Supply and demand for endocannabinoids, Trends Neurosci., 34, 304-315, https://doi.org/10.1016/j.tins.2011.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Speed, H. E., Masiulis, I., Gibson, J. R., and Powell, C. M. (2015) Increased cortical inhibition in autism-linked neuroligin-3R451C mice is due in part to loss of endocannabinoid signaling, PLoS One, 10, e0140638, https://doi.org/10.1371/journal.pone.0140638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martella, G., Meringolo, M., Trobiani, L., De Jaco, A., Pisani, A., and Bonsi, P. (2018) The neurobiological bases of autism spectrum disorders: the R451C-neuroligin3 mutation hampers the expression of long-term synaptic depression in the dorsal striatum, Eur. J. Neurosci., 47, 701-708, https://doi.org/10.1111/ejn.13705.

    Article  PubMed  Google Scholar 

  51. Anderson, G. R., Aoto, J., Tabuchi, K., Földy, C., Covy, J., et al. (2015) β-Neurexins control neural circuits by regulating synaptic endocannabinoid signaling, Cell, 162, 593-606, https://doi.org/10.1016/j.cell.2015.06.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Glass, M., and Felder, C. C. (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a G(s) linkage to the CB1 receptor, J. Neurosci., 17, 5327-5333, https://doi.org/10.1523/jneurosci.17-14-05327.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abadji, V., Lucas-Lenard, J. M., Chin, C. N., and Kendall, D. A. (1999) Involvement of the carboxyl terminus of the third intracellular loop of the cannabinoid CB1 receptor in constitutive activation of G(s), J. Neurochem., 72, 2032-2038, https://doi.org/10.1046/j.1471-4159.1999.0722032.x.

    Article  CAS  PubMed  Google Scholar 

  54. Calandra, B., Portier, M., Kernéis, A., Delpech, M., Carillon, C., et al. (1999) Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor, Eur. J. Pharmacol., 374, 445-455, https://doi.org/10.1016/S0014-2999(99)00349-0.

    Article  CAS  PubMed  Google Scholar 

  55. Kearn, C. S., Blake-Palmer, K., Daniel, E., Mackie, K., and Glass, M. (2005) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol. Pharmacol., 67, 1697-1704, https://doi.org/10.1124/mol.104.006882.

    Article  CAS  PubMed  Google Scholar 

  56. Glass, M., and Northup, J. K. (1999) Agonist selective regulation of Gproteins by cannabinoid CB1 and CB2 receptors, Mol. Pharmacol., 56, 1362-1369, https://doi.org/10.1124/mol.56.6.1362.

    Article  CAS  PubMed  Google Scholar 

  57. Wootten, D., Christopoulos, A., Marti-Solano, M., Babu, M. M., and Sexton, P. M. (2018) Mechanisms of signalling and biased agonism in Gprotein-coupled receptors, Nat. Rev. Mol. Cell Biol., 19, 638-653, https://doi.org/10.1038/s41580-018-0049-3.

    Article  CAS  PubMed  Google Scholar 

  58. Varga, E., Georgieva, T., Tumati, S., Alves, I., Salamon, Z., et al. (2010) Functional selectivity in cannabinoid signaling, Curr. Mol. Pharmacol., 1, 273-284, https://doi.org/10.2174/1874467210801030273.

    Article  Google Scholar 

  59. Diez-Alarcia, R., Ibarra-Lecue, I., Lopez-Cardona, Á. P., Meana, J., Gutierrez-Adán, A., et al. (2016) Biased agonism of three different cannabinoid receptor agonists in mouse brain cortex, Front. Pharmacol., 7, 415, https://doi.org/10.3389/fphar.2016.00415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gaydukov, A. E., Dzhalagoniya, I. Z., Tarasova, E. O., and Balezina, O. P. (2020) The participation of endocannabinoid receptors in the regulation of spontaneous synaptic activity at neuromuscular junctions of mice, Biochemistry (Moscow) Suppl. Ser. A Membr. Cell Biol., 14, 7-16, https://doi.org/10.1134/S1990747819060059.

    Article  Google Scholar 

  61. Laprairie, R. B., Bagher, A. M., Kelly, M. E. M., Dupré, D. J., and Denovan-Wright, E. M. (2014) Type1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons, J. Biol. Chem., 289, 24845-24862, https://doi.org/10.1074/jbc.M114.557025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kenakin, T., and Christopoulos, A. (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact, Nat. Rev. Drug Discov., 12, 205-216, https://doi.org/10.1038/nrd3954.

    Article  CAS  PubMed  Google Scholar 

  63. Finlay, D. B., Cawston, E. E., Grimsey, N. L., Hunter, M. R., Korde, A., et al. (2017) Gas signalling of the CB1 receptor and the influence of receptor number, Br. J. Pharmacol., 174, 2545-2562, https://doi.org/10.1111/bph.13866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Di Marzo, V. (2018) New approaches and challenges to targeting the endocannabinoid system, Nat. Rev. Drug Discov., 17, 623-639, https://doi.org/10.1038/nrd.2018.115.

    Article  CAS  PubMed  Google Scholar 

  65. Song, C., Anderson, G. R., Sutton, L. P., Dao, M., and Martemyanov, K. A. (2018) Selective role of RGS9-2 in regulating retrograde synaptic signaling of indirect pathway medium spiny neurons in dorsal striatum, J. Neurosci., 38, 7120-7131, https://doi.org/10.1523/JNEUROSCI.0493-18.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. O’Brien, J. B., Wilkinson, J. C., and Roman, D. L. (2019) Regulator of G-protein signaling (RGS) proteins as drug targets: progress and future potentials, J. Biol. Chem., 294, 18571-18585, https://doi.org/10.1074/jbc.REV119.007060.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ibsen, M. S., Connor, M., and Glass, M. (2017) Cannabinoid CB1 and CB2 receptor signaling and bias, Cannabis Cannabinoid Res., 2, 48-60, https://doi.org/10.1089/can.2016.0037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Morales, P., Goya, P., and Jagerovic, N. (2018) Emerging strategies targeting CB2 cannabinoid receptor: biased agonism and allosterism, Biochem. Pharmacol., 157, 8-17, https://doi.org/10.1016/j.bcp.2018.07.031.

    Article  CAS  PubMed  Google Scholar 

  69. Wouters, E., Walraed, J., Banister, S. D., and Stove, C. P. (2019) Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists, Biochem. Pharmacol., 169, 113623, https://doi.org/10.1016/j.bcp.2019.08.025.

    Article  CAS  PubMed  Google Scholar 

  70. Al-Zoubi, R., Morales, P., and Reggio, P. H. (2019) Structural insights into CB1 receptor biased signaling, Int. J. Mol. Sci., 20, 1837, https://doi.org/10.3390/ijms20081837.

    Article  CAS  PubMed Central  Google Scholar 

  71. Sachdev, S., Banister, S. D., Santiago, M., Bladen, C., Kassiou, M., and Connor, M. (2020) Differential activation of Gprotein-mediated signaling by synthetic cannabinoid receptor agonists, Pharmacol. Res. Perspect., 8, e00566, https://doi.org/10.1002/prp2.566.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Patel, M., Finlay, D. B., and Glass, M. (2021) Biased agonism at the cannabinoid receptors – evidence from synthetic cannabinoid receptor agonists, Cell. Signal., 78, 109865, https://doi.org/10.1016/j.cellsig.2020.109865.

    Article  CAS  PubMed  Google Scholar 

  73. Ibsen, M. S., Finlay, D. B., Patel, M., Javitch, J. A., Glass, M., and Grimsey, N. L. (2019) Cannabinoid CB1 and CB2 receptor-mediated arrestin translocation: species, subtype, and agonist-dependence, Front. Pharmacol., 10, 350, https://doi.org/10.3389/fphar.2019.00350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. DeWire, S. M., Ahn, S., Lefkowitz, R. J., and Shenoy, S. K. (2007) β-Arrestins and cell signaling, Annu. Rev. Physiol., 69, 483-510, https://doi.org/10.1146/annurev.physiol.69.022405.154749.

    Article  CAS  PubMed  Google Scholar 

  75. Nobles, K. N., Xiao, K., Ahn, S., Shukla, A. K., Lam, C. M., et al. (2011) Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin, Sci. Signal., 4, ra51, https://doi.org/10.1126/scisignal.2001707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Delgado-Peraza, F., Ahn, K. H., Nogueras-Ortiz, C., Mungrue, I. N., Mackie, K., et al. (2016) Mechanisms of biased β-arrestin-mediated signaling downstream from the cannabinoid 1 receptor, Mol. Pharmacol., 89, 618-629, https://doi.org/10.1124/mol.115.103176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morales, P., Bruix, M., and Jiménez, M. A. (2020) Structural insights into β-arrestin/CB1 receptor interaction: Nmr and cd studies on model peptides, Int. J. Mol. Sci., 21, 8111, https://doi.org/10.3390/ijms21218111.

    Article  CAS  PubMed Central  Google Scholar 

  78. Rios, C., Gomes, I., and Devi, L. A. (2006) μ opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis, Br. J. Pharmacol., 148, 387-395, https://doi.org/10.1038/sj.bjp.0706757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cinar, R., Freund, T. F., Katona, I., Mackie, K., and Szucs, M. (2008) Reciprocal inhibition of G-protein signaling is induced by CB1 cannabinoid and GABAB receptor interactions in rat hippocampal membranes, Neurochem. Int., 52, 1402-1409, https://doi.org/10.1016/j.neuint.2008.02.005.

    Article  CAS  PubMed  Google Scholar 

  80. Turu, G., Várnal, P., Gyombolai, P., Szidonya, L., Offertaler, L., et al. (2009) Paracrine transactivation of the CB1 cannabinoid receptor by AT1 angiotensin and other Gq/11 protein-coupled receptors, J. Biol. Chem., 284, 16914-16921, https://doi.org/10.1074/jbc.M109.003681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, Y., Liu, Q., Guo, B., Ye, F., Ge, J., and Xue, L. (2020) BDNF activates postsynaptic TrkB receptors to induce endocannabinoid release and inhibit presynaptic calcium influx at a calyx-type synapse, J. Neurosci., 40, 8070-8087, https://doi.org/10.1523/JNEUROSCI.2838-19.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Callén, L., Moreno, E., Barroso-Chinea, P., Moreno-Delgado, D., Cortés, A., et al. (2012) Cannabinoid receptors CB 1 and CB 2 form functional heteromers in brain, J. Biol. Chem., 287, 20851-20865, https://doi.org/10.1074/jbc.M111.335273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Navarro, G., Varani, K., Reyes-Resina, I., de Medina, V. S., Rivas-Santisteban, R., et al. (2018) Cannabigerol action at cannabinoid CB1 and CB2 receptors and at CB1-CB2 heteroreceptor complexes, Front. Pharmacol., 9, 632, https://doi.org/10.3389/fphar.2018.00632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bénard, G., Massa, F., Puente, N., Lourenço, J., Bellocchio, L., et al. (2012) Mitochondrial CB1 receptors regulate neuronal energy metabolism, Nat. Neurosci., 15, 558-564, https://doi.org/10.1038/nn.3053.

    Article  CAS  PubMed  Google Scholar 

  85. Hebert-Chatelain, E., Reguero, L., Puente, N., Lutz, B., Chaouloff, F., et al. (2014) Cannabinoid control of brain bioenergetics: exploring the subcellular localization of the CB1 receptor, Mol. Metab., 3, 495-504, https://doi.org/10.1016/j.molmet.2014.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koch, M., Varela, L., Kim, J. G., Kim, J. D., Hernández-Nuño, F., et al. (2015) Hypothalamic POMC neurons promote cannabinoid-induced feeding, Nature, 519, 45-50, https://doi.org/10.1038/nature14260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rozenfeld, R., and Devi, L. A. (2008) Regulation of CB1 cannabinoid receptor trafficking by the adaptor protein AP-3, FASEB J., 22, 2311-2322, https://doi.org/10.1096/fj.07-102731.

    Article  CAS  PubMed  Google Scholar 

  88. Hebert-Chatelain, E., Desprez, T., Serrat, R., Bellocchio, L., Soria-Gomez, E., et al. (2016) A cannabinoid link between mitochondria and memory, Nature, 539, 555-559, https://doi.org/10.1038/nature20127.

    Article  CAS  PubMed  Google Scholar 

  89. Djeungoue-Petga, M. A., and Hebert-Chatelain, E. (2017) Linking mitochondria and synaptic transmission: the CB1 receptor, BioEssays, 39, 1700126, https://doi.org/10.1002/bies.201700126.

    Article  CAS  Google Scholar 

  90. Den Boon, F. S., Chameau, P., Schaafsma-Zhao, Q., Van Aken, W., Bari, M., et al. (2012) Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors, Proc. Natl. Acad. Sci. USA, 109, 3534-3539, https://doi.org/10.1073/pnas.1118167109.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Brailoiu, G. C., Deliu, E., Marcu, J., Hoffman, N. E., Console-Bram, L., et al. (2014) Differential activation of intracellular versus plasmalemmal CB2 Cannabinoid receptors, Biochemistry, 53, 4990-4999, https://doi.org/10.1021/bi500632a.

    Article  CAS  PubMed  Google Scholar 

  92. Jong, Y. J. I., Harmon, S. K., and O’Malley, K. L. (2018) Intracellular GPCRs play key roles in synaptic plasticity, ACS Chem. Neurosci., 9, 2162-2172, https://doi.org/10.1021/acschemneuro.7b00516.

    Article  CAS  PubMed  Google Scholar 

  93. Navarrete, M., and Araque, A. (2008) Endocannabinoids mediate neuron-astrocyte communication, Neuron, 57, 883-893, https://doi.org/10.1016/j.neuron.2008.01.029.

    Article  CAS  PubMed  Google Scholar 

  94. Metna-Laurent, M., and Marsicano, G. (2015) Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors, Glia, 63, 353-364, https://doi.org/10.1002/glia.22773.

    Article  PubMed  Google Scholar 

  95. Stella, N. (2010) Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas, Glia, 58, 1017-1030, https://doi.org/10.1002/glia.20983.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gutiérrez-Rodríguez, A., Bonilla-Del Río, I., Puente, N., Gómez-Urquijo, S. M., Fontaine, C. J., et al. (2018) Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus, Glia, 66, 1417-1431, https://doi.org/10.1002/glia.23314.

    Article  PubMed  Google Scholar 

  97. Jimenez-Blasco, D., Busquets-Garcia, A., Hebert-Chatelain, E., Serrat, R., Vicente-Gutierrez, C., et al. (2020) Glucose metabolism links astroglial mitochondria to cannabinoid effects, Nature, 583, 603-608, https://doi.org/10.1038/s41586-020-2470-y.

    Article  CAS  PubMed  Google Scholar 

  98. Hegyi, Z., Oláh, T., Koszeghy, Á., Pisticelli, F., Holló, K., et al. (2018) CB1 receptor activation induces intracellular Ca2+ mobilization and 2-arachidonoylglycerol release in rodent spinal cord astrocytes, Sci. Rep., 8, 10562, https://doi.org/10.1038/s41598-018-28763-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Smith, N. A., Bekar, L. K., and Nedergaard, M. (2020) Astrocytic endocannabinoids mediate hippocampal transient heterosynaptic depression, Neurochem. Res., 45, 100-108, https://doi.org/10.1007/s11064-019-02834-0.

    Article  CAS  PubMed  Google Scholar 

  100. Covelo, A., and Araque, A. (2016) Lateral regulation of synaptic transmission by astrocytes, Neuroscience, 323, 62-66, https://doi.org/10.1016/j.neuroscience.2015.02.036.

    Article  CAS  PubMed  Google Scholar 

  101. Navarrete, M., and Araque, A. (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes, Neuron, 68, 113-126, https://doi.org/10.1016/j.neuron.2010.08.043.

    Article  CAS  PubMed  Google Scholar 

  102. Robin, L. M., Oliveira da Cruz, J. F., Langlais, V. C., Martin-Fernandez, M., Metna-Laurent, M., et al. (2018) Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory, Neuron, 98, 935-944.e5, https://doi.org/10.1016/j.neuron.2018.04.034.

    Article  CAS  PubMed  Google Scholar 

  103. Carlsen, E. M. M., Falk, S., Skupio, U., Robin, L., Zottola, A. C. P., et al. (2021) Spinal astroglial cannabinoid receptors control pathological tremor, Nat. Neurosci., 24, 658-666, https://doi.org/10.1038/s41593-021-00818-4.

    Article  CAS  PubMed  Google Scholar 

  104. Busquets-Garcia, A., Bains, J., and Marsicano, G. (2018) CB1 Receptor signaling in the brain: extracting specificity from ubiquity, Neuropsychopharmacology, 43, 4-20, https://doi.org/10.1038/npp.2017.206.

    Article  CAS  PubMed  Google Scholar 

  105. Eldeeb, K., Leone-Kabler, S., and Howlett, A. C. (2016) CB1 cannabinoid receptor-mediated increases in cyclic AMP accumulation are correlated with reduced Gi/o function, J. Basic Clin. Physiol. Pharmacol., 27, 311-322, https://doi.org/10.1515/jbcpp-2015-0096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bagher, A. M., Laprairie, R. B., Toguri, J. T., Kelly, M. E. M., and Denovan-Wright, E. M. (2017) Bidirectional allosteric interactions between cannabinoid receptor1 (CB1) and dopamine receptor2 long (D2L) heterotetramers, Eur. J. Pharmacol., 813, 66-83, https://doi.org/10.1016/j.ejphar.2017.07.034.

    Article  CAS  PubMed  Google Scholar 

  107. Piette, C., Cui, Y., Gervasi, N., and Venance, L. (2020) Lights on endocannabinoid-mediated synaptic potentiation, Front. Mol. Neurosci., 13, 132, https://doi.org/10.3389/fnmol.2020.00132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cui, Y., Prokin, I., Xu, H., Delord, B., Genet, S., et al. (2016) Endocannabinoid dynamics gate spike- timing dependent depression and potentiation, ELife, 5, e13185, https://doi.org/10.7554/eLife.13185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shonesy, B. C., Wang, X., Rose, K. L., Ramikie, T. S., Cavener, V. S., et al. (2013) CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling, Nat. Neurosci., 16, 456-463, https://doi.org/10.1038/nn.3353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xu, J. Y., Zhang, J., and Chen, C. (2012) Long-lasting potentiation of hippocampal synaptic transmission by direct cortical input is mediated via endocannabinoids, J. Physiol., 590, 2305-2315, https://doi.org/10.1113/jphysiol.2011.223511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Silva-Cruz, A., Carlström, M., Ribeiro, J. A., and Sebastião, A. M. (2017) Dual influence of endocannabinoids on long-term potentiation of synaptic transmission, Front. Pharmacol., 8, 921, https://doi.org/10.3389/fphar.2017.00921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cavuoto, P., McAinch, A. J., Hatzinikolas, G., Janovská, A., Game, P., and Wittert, G. A. (2007) The expression of receptors for endocannabinoids in human and rodent skeletal muscle, Biochem. Biophys. Res. Commun., 364, 105-110, https://doi.org/10.1016/j.bbrc.2007.09.099.

    Article  CAS  PubMed  Google Scholar 

  113. Crespillo, A., Suárez, J., Bermúdez-Silva, F. J., Rivera, P., Vida, M., et al. (2011) Expression of the cannabinoid system in muscle: effects of a high-fat diet and CB1 receptor blockade, Biochem. J., 433, 175-185, https://doi.org/10.1042/BJ20100751.

    Article  CAS  PubMed  Google Scholar 

  114. Hutchins-Wiese, H. L., Li, Y., Hannon, K., and Watkins, B. A. (2012) Hind limb suspension and long-chain omega-3 PUFA increase mRNA endocannabinoid system levels in skeletal muscle, J. Nutr. Biochem., 23, 986-993, https://doi.org/10.1016/j.jnutbio.2011.05.005.

    Article  CAS  PubMed  Google Scholar 

  115. Maccarrone, M., Bab, I., Bíró, T., Cabral, G. A., Dey, S. K., et al. (2015) Endocannabinoid signaling at the periphery: 50years after THC, Trends Pharmacol. Sci., 36, 277-296, https://doi.org/10.1016/j.tips.2015.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Oláh, T., Bodnár, D., Tóth, A., Vincze, J., Fodor, J., et al. (2016) Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle, J. Physiol., 594, 7381-7398, https://doi.org/10.1113/JP272449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Heinitz, S., Basolo, A., Piomelli, D., Krakoff, J., and Piaggi, P. (2018) Endocannabinoid anandamide mediates the effect of skeletal muscle sphingomyelins on human energy expenditure, J. Clin. Endocrinol. Metab., 103, 3757-3766, https://doi.org/10.1210/jc.2018-00780.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Morsch, M., Protti, D. A., Cheng, D., Braet, F., Chung, R. S., et al. (2018) Cannabinoid-induced increase of quantal size and enhanced neuromuscular transmission, Sci. Rep., 8, 4685, https://doi.org/10.1038/s41598-018-22888-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ge, D., Odierna, G. L., and Phillips, W. D. (2020) Influence of cannabinoids upon nerve-evoked skeletal muscle contraction, Neurosci. Lett., 725, 134900, https://doi.org/10.1016/j.neulet.2020.134900.

    Article  CAS  PubMed  Google Scholar 

  120. Hoekman, T. B., Dettbarn, W. D., and Klausner, H. A. (1976) Actions of δ9-tetrahydrocannabinol on neuromuscular transmission in the rat diaphragm, Neuropharmacology, 15, 315-319, https://doi.org/10.1016/0028-3908(76)90135-0.

    Article  CAS  PubMed  Google Scholar 

  121. Kumbaraci, N. M., and Nastuk, W. L. (1980) Effects of Δ9-tetrahydrocannabinol on excitable membranes and neuromuscular transmission, Mol. Pharmacol., 17, 344-349.

    CAS  PubMed  Google Scholar 

  122. Turkanis, S. A., and Karler, R. (1986) Effects of delta-9-tetrahydrocannabinol, 11-hydroxy-delta-9-tetrahydrocannabinol and cannabidiol on neuromuscular transmission in the frog, Neuropharmacology, 25, 1273-1278, https://doi.org/10.1016/0028-3908(86)90147-4.

    Article  CAS  PubMed  Google Scholar 

  123. Newman, Z., Malik, P., Wu, T. Y., Ochoa, C., Watsa, N., and Lindgren, C. (2007) Endocannabinoids mediate muscarine-induced synaptic depression at the vertebrate neuromuscular junction, Eur. J. Neurosci., 25, 1619-1630, https://doi.org/10.1111/j.1460-9568.2007.05422.x.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Silveira, P. E., Silveira, N. A., de Cássia Morini, V., Kushmerick, C., and Naves, L. A. (2010) Opposing effects of cannabinoids and vanilloids on evoked quantal release at the frog neuromuscular junction, Neurosci. Lett., 473, 97-101, https://doi.org/10.1016/j.neulet.2010.02.026.

    Article  CAS  PubMed  Google Scholar 

  125. Melis, M., Pistis, M., Perra, S., Muntoni, A. L., Pillolla, G., and Gessa, G. L. (2004) Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors, J. Neurosci., 24, 53-62, https://doi.org/10.1523/JNEUROSCI.4503-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhu, P. J., and Lovinger, D. M. (2005) Retrograde endocannabinoid signaling in a postsynaptic neuron/synaptic bouton preparation from basolateral amygdala, J. Neurosci., 25, 6199-6207, https://doi.org/10.1523/JNEUROSCI.1148-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tarasova,E. O., Khotkina, N. A., Gaydukov, A. E., and Balezina, O. P. (2021) Spontaneous acetylcholine release potentiation induced by 2-arachidonoylglycerol and anandamide in mouse motor synapses, Moscow Univ. Biol. Sci. Bull., 76, 1-6, https://doi.org/10.3103/S0096392521010053.

    Article  Google Scholar 

  128. Edwards, R. H. (2007) The neurotransmitter cycle and quantal size, Neuron, 55, 835-858, https://doi.org/10.1016/j.neuron.2007.09.001.

    Article  CAS  PubMed  Google Scholar 

  129. Balezina, O. P., and Gaydukov, A. E. (2018) Presynaptic regulation of neurotransmitter quantal size, Usp. Fiziol. Nauk, 49, 20-44, https://doi.org/10.7868/s0301179818020029.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-04-00616a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander E. Gaydukov.

Ethics declarations

Authors declare no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balezina, O.P., Tarasova, E.O. & Gaydukov, A.E. Noncanonical Activity of Endocannabinoids and Their Receptors in Central and Peripheral Synapses. Biochemistry Moscow 86, 818–832 (2021). https://doi.org/10.1134/S0006297921070038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921070038

Keywords

Navigation