Skip to main content
Log in

Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Ion-translocating ATPases and ATP synthases (F-, V-, A-type ATPases, and several P-type ATPases and ABC-transporters) catalyze ATP hydrolysis or ATP synthesis coupled with the ion transport across the membrane. F-, V-, and A-ATPases are protein nanomachines that combine transmembrane transport of protons or sodium ions with ATP synthesis/hydrolysis by means of a rotary mechanism. These enzymes are composed of two multisubunit subcomplexes that rotate relative to each other during catalysis. Rotary ATPases phosphorylate/dephosphorylate nucleotides directly, without the generation of phosphorylated protein intermediates. F-type ATPases are found in chloroplasts, mitochondria, most eubacteria, and in few archaea. V-type ATPases are eukaryotic enzymes present in a variety of cellular membranes, including the plasma membrane, vacuoles, late endosomes, and trans-Golgi cisternae. A-type ATPases are found in archaea and some eubacteria. F- and A-ATPases have two main functions: ATP synthesis powered by the proton motive force (pmf) or, in some prokaryotes, sodium-motive force (smf) and generation of the pmf or smf at the expense of ATP hydrolysis. In prokaryotes, both functions may be vitally important, depending on the environment and the presence of other enzymes capable of pmf or smf generation. In eukaryotes, the primary and the most crucial function of F-ATPases is ATP synthesis. Eukaryotic V-ATPases function exclusively as ATP-dependent proton pumps that generate pmf necessary for the transmembrane transport of ions and metabolites and are vitally important for pH regulation. This review describes the diversity of rotary ion-translocating ATPases from different organisms and compares the structural, functional, and regulatory features of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Beyenbach, K. W. (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation, J. Exp. Biol., 209, 577-589, https://doi.org/10.1242/jeb.02014.

    Article  CAS  PubMed  Google Scholar 

  2. Ihara, K., Abe, T., Sugimura, K. I., and Mukohata, Y. (1992) Halobacterial A-ATP synthase in relation to V-ATPase, J. Exp. Biol., 172, 475-485.

    CAS  PubMed  Google Scholar 

  3. Müller, V., and Grüber, G. (2003) ATP synthases: structure, function and evolution of unique energy converters, Cell. Mol. Life Sci., 60, 474-494, https://doi.org/10.1007/s000180300040.

    Article  PubMed  Google Scholar 

  4. Grüber, G., and Marshansky, V. (2008) New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0), BioEssays, 30, 1096-1099, https://doi.org/10.1002/bies.20827.

    Article  CAS  PubMed  Google Scholar 

  5. Kühlbrandt, W. (2019) Structure and mechanisms of F-type ATP synthases, Ann. Rev. Biochem., 88, 515-549, https://doi.org/10.1146/annurev-biochem-013118-110903.

    Article  CAS  PubMed  Google Scholar 

  6. Hilario, E., and Gogarten, J. P. (1998) The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits, J. Mol. Evol., 46, 703-715, https://doi.org/10.1007/pl00006351.

    Article  CAS  PubMed  Google Scholar 

  7. Mulkidjanian, A. Y., Makarova, K. S., Galperin, M. Y., and Koonin, E. V. (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases, Nat. Rev. Microbiol., 5, 892-899, https://doi.org/10.1038/nrmicro1767.

    Article  CAS  PubMed  Google Scholar 

  8. Gogarten, J. P., and Taiz, L. (1992) Evolution of proton pumping ATPases: rooting the tree of life, Photosynth. Res., 33, 137-146, https://doi.org/10.1007/BF00039176.

    Article  CAS  PubMed  Google Scholar 

  9. Kühlbrandt, W., and Davies, K. M. (2016) Rotary ATPases: a new twist to an ancient machine, Trends Biochem. Sci., 41, 106-116, https://doi.org/10.1016/j.tibs.2015.10.006.

    Article  CAS  PubMed  Google Scholar 

  10. Guo, H., Suzuki, T., and Rubinstein, J. L. (2019) Structure of a bacterial ATP synthase, eLife, 8, https://doi.org/10.7554/eLife.43128.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gu, J., Zhang, L., Zong, S., Guo, R., Liu, T., et al. (2019) Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1, Science, 364, 1068- 1075, https://doi.org/10.1126/science.aaw4852.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, L., and Sazanov, L. A. (2019) Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase, Science, 365, https://doi.org/10.1126/science.aaw9144.

    Article  CAS  PubMed  Google Scholar 

  13. Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V., and Rubinstein, J. L. (2020) Structure of V-ATPase from the mammalian brain, Science, 367, 1240-1246, https://doi.org/10.1126/science.aaz2924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hahn, A., Vonck, J., Mills, D. J., Meier, T., and Kühlbrandt, W. (2018) Structure, mechanism, and regulation of the chloroplast ATP synthase, Science, 360, https://doi.org/10.1126/science.aat4318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy, B. J., Klusch, N., Langer, J., Mills, D. J., Yildiz, Ö., and Kühlbrandt, W. (2019) Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-FO coupling, Science, 364, https://doi.org/10.1126/science.aaw9128.

    Article  CAS  PubMed  Google Scholar 

  16. Mühleip, A., McComas, S. E., and Amunts, A. (2019) Structure of a mitochondrial ATP synthase with bound native cardiolipin, eLife, 8, https://doi.org/10.7554/eLife.51179.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R. A., and Schägger, H. (1998) Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits, EMBO J., 17, 7170-7178, https://doi.org/10.1093/emboj/17.24.7170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo, H., Bueler, S. A., and Rubinstein, J. L. (2017) Atomic model for the dimeric FO region of mitochondrial ATP synthase, Science, 358, 936-940, https://doi.org/10.1126/science.aao4815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eubel, H., Jänsch, L., and Braun, H.-P. (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II, Plant Physiol., 133, 274-286, https://doi.org/10.1104/pp.103.024620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Strauss, M., Hofhaus, G., Schröder, R. R., and Kühlbrandt, W. (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane, EMBO J., 27, 1154-1160, https://doi.org/10.1038/emboj.2008.35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blum, T. B., Hahn, A., Meier, T., Davies, K. M., and Kühlbrandt, W. (2019) Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows, Proc. Natl. Acad. Sci. USA, 116, 4250-4255, https://doi.org/10.1073/pnas.1816556116.

    Article  CAS  PubMed  Google Scholar 

  22. Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D. M., et al. (2002) The ATP synthase is involved in generating mitochondrial cristae morphology, EMBO J., 21, 221-230, https://doi.org/10.1093/emboj/21.3.221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davies, K. M., Anselmi, C., Wittig, I., Faraldo-Gómez, J. D., and Kühlbrandt, W. (2012) Structure of the yeast F1F0-ATP synthase dimer and its role in shaping the mitochondrial cristae, Proc. Natl. Acad. Sci. USA, 109, 13602-13607, https://doi.org/10.1073/pnas.1204593109.

    Article  PubMed  Google Scholar 

  24. Muench, S. P., Trinick, J., and Harrison, M. A. (2011) Structural divergence of the rotary ATPases, Quart. Rev. Bioph., 44, 311-356, https://doi.org/10.1017/S0033583510000338.

    Article  CAS  Google Scholar 

  25. Mazhab-Jafari, M. T., Rohou, A., Schmidt, C., Bueler, S. A., Benlekbir, S., Robinson, C. V., et al. (2016) Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase, Nature, 539, 118-122, https://doi.org/10.1038/nature19828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grüber, G., Manimekalai, M. S. S., Mayer, F., and Müller, V. (2014) ATP synthases from archaea: the beauty of a molecular motor, Biochim. Biophys. Acta, 1837, 940-952, https://doi.org/10.1016/j.bbabio.2014.03.004.

    Article  CAS  PubMed  Google Scholar 

  27. Harrison, M. A., and Muench, S. P. (2018) The vacuolar ATPase – a nano-scale motor that drives cell biology, in Membrane Protein Complexes: Structure and Function (Harris, J. R., and Boekema, E. J., eds.) Springer Singapore, Singapore, p. 409-459, https://doi.org/10.1007/978-981-10-7757-9_14.

  28. Vasanthakumar, T., and Rubinstein, J. L. (2020) Structure and roles of V-type ATPases, Trends Biochem. Sci., 45, 295-307, https://doi.org/10.1016/j.tibs.2019.12.007.

    Article  CAS  PubMed  Google Scholar 

  29. Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria, Nature, 370, 621-628.

    Article  CAS  Google Scholar 

  30. Arai, S., Saijo, S., Suzuki, K., Mizutani, K., Kakinuma, Y., Ishizuka-Katsura, Y., et al. (2013) Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures, Nature, 493, 703-707, https://doi.org/10.1038/nature11778.

    Article  CAS  PubMed  Google Scholar 

  31. Schäfer, G., Engelhard, M., and Müller, V. (1999) Bioenergetics of the Archaea, Microbiol. Mol. Biol. Rev., 63, 570-620, https://doi.org/10.1128/mmbr.63.3.570-620.1999.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumar, A., Manimekalai, M. S. S., Balakrishna, A. M., Jeyakanthan, J., and Grüber, G. (2010) Nucleotide binding states of subunit A of the A-ATP synthase and the implication of P-loop switch in evolution, J. Mol. Biol., 396, 301-320, https://doi.org/10.1016/j.jmb.2009.11.046.

    Article  CAS  PubMed  Google Scholar 

  33. Komoriya, Y., Ariga, T., Iino, R., Imamura, H., Okuno, D., and Noji, H. (2012) Principal role of the arginine finger in rotary catalysis of F1-ATPase, J. Biol. Chem., 287, 15134-15142, https://doi.org/10.1074/jbc.M111.328153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malyan, A. N. (2013) Noncatalytic nucleotide binding sites: properties and mechanism of involvement in ATP synthase activity regulation, Biochemistry (Moscow), 78, 1512-1523, https://doi.org/10.1134/S0006297913130099.

    Article  CAS  Google Scholar 

  35. Lapashina, A. S., and Feniouk, B. A. (2018) ADP-inhibition of H+-FOF1-ATP synthase, Biochemistry (Moscow), 83, 1141-1160, https://doi.org/10.1134/S0006297918100012.

    Article  CAS  Google Scholar 

  36. Suzuki, K., Mizutani, K., Maruyama, S., Shimono, K., Imai, F. L., Muneyuki, E., et al. (2016) Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor, Nat. Commun., 7, 13235, https://doi.org/10.1038/ncomms13235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schäfer, I. B., Bailer, S. M., Düser, M. G., Börsch, M., Bernal, R. A., et al. (2006) Crystal structure of the archaeal A1AO ATP synthase subunit B from Methanosarcina mazei Gö1: implications of nucleotide-binding differences in the major A1AO subunits A and B, J. Mol. Biol., 358, 725-740, https://doi.org/10.1016/j.jmb.2006.02.057.

    Article  CAS  PubMed  Google Scholar 

  38. Gogarten, J. P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E. J., Bowman, B. J., et al. (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes, Proc. Natl. Acad. Sci. USA, 86, 6661-6665, https://doi.org/10.1073/pnas.86.17.6661.

    Article  CAS  PubMed  Google Scholar 

  39. Boyer, P. D. (1997) The ATP synthase – a splendid molecular machine, Annu. Rev. Biochem., 66, 717-749.

    Article  CAS  Google Scholar 

  40. Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. (1997) Direct observation of the rotation of F1-ATPase, Nature, 386, 299-302, https://doi.org/10.1038/386299a0.

    Article  CAS  PubMed  Google Scholar 

  41. Okuno, D., Iino, R., and Noji, H. (2011) Rotation and structure of FOF1-ATP synthase, J. Biochem., 149, 655-664, https://doi.org/10.1093/jb/mvr049.

    Article  CAS  PubMed  Google Scholar 

  42. Junge, W., and Nelson, N. (2015) ATP synthase, Annu. Rev. Biochem., 84, 631-657, https://doi.org/10.1146/annurev-biochem-060614-034124.

    Article  CAS  PubMed  Google Scholar 

  43. Noji, H., Ueno, H., and McMillan, D. G. G. (2017) Catalytic robustness and torque generation of the F1-ATPase, Biophys. Rev., 9, 103-118, https://doi.org/10.1007/s12551-017-0262-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iida, T., Minagawa, Y., Ueno, H., Kawai, F., Murata, T., and Iino, R. (2019) Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of V-ATPase, J. Biol. Chem., 294, 17017-17030, https://doi.org/10.1074/jbc.RA119.008947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Furuike, S., Nakano, M., Adachi, K., Noji, H., Kinosita, K., and Yokoyama, K. (2011) Resolving stepping rotation in Thermus thermophilus H(+)-ATPase/synthase with an essentially drag-free probe, Nat. Commun., 2, 233, https://doi.org/10.1038/ncomms1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Imamura, H., Takeda, M., Funamoto, S., Shimabukuro, K., Yoshida, M., and Yokoyama, K. (2005) Rotation scheme of V1-motor is different from that of F1-motor, Proc. Natl. Acad. Sci. USA, 102, 17929-17933.

    Article  CAS  Google Scholar 

  47. Hirata, T., Iwamoto-Kihara, A., Sun-Wada, G.-H., Okajima, T., Wada, Y., and Futai, M. (2003) Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits, J. Biol. Chem., 278, 23714-23719, https://doi.org/10.1074/jbc.M302756200.

    Article  CAS  PubMed  Google Scholar 

  48. Noji, H., Bald, D., Yasuda, R., Itoh, H., Yoshida, M., and Kinosita, K. (2001) Purine but not pyrimidine nucleotides support rotation of F(1)-ATPase, J. Biol. Chem., 276, 25480-25486, https://doi.org/10.1074/jbc.M102200200.

    Article  CAS  PubMed  Google Scholar 

  49. Pisa, K. Y., Huber, H., Thomm, M., and Müller, V. (2007) A sodium ion-dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus: A1AO ATPase of Pyrococcus furiosus, FEBS J., 274, 3928-3938, https://doi.org/10.1111/j.1742-4658.2007.05925.x.

    Article  CAS  PubMed  Google Scholar 

  50. Yokoyama, K., Akabane, Y., Ishii, N., and Yoshida, M. (1994) Isolation of prokaryotic VOV1-ATPase from a thermophilic eubacterium Thermus thermophilus, J. Biol. Chem., 269, 12248-12253.

    CAS  PubMed  Google Scholar 

  51. Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y. (1975) A highly stable adenosine triphosphatase from a thermophilic bacterium. Purification, properties, and reconstitution, J. Biol. Chem., 250, 7910-7916.

    CAS  PubMed  Google Scholar 

  52. Senior, A. E., Lee, R. S., al-Shawi, M. K., and Weber, J. (1992) Catalytic properties of Escherichia coli F1-ATPase depleted of endogenous nucleotides, Arch. Biochem. Biophys., 297, 340-344.

    Article  CAS  Google Scholar 

  53. Iida, T., Hoaki, T., Kamino, K., Inatomi, K., Kamagata, Y., and Maruyama, T. (1996) Vacuolar-type ATPase in a hyperthermophilic archaeum, Thermococcus sp., Biochem. Biophys. Res. Commun., 229, 559-564, https://doi.org/10.1006/bbrc.1996.1843.

    Article  CAS  PubMed  Google Scholar 

  54. Konishi, J., Wakagi, T., Oshima, T., and Yoshida, M. (1987) Purification and properties of the ATPase solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, J. Biochem., 102, 1379-1387, https://doi.org/10.1093/oxfordjournals.jbchem.a122184.

    Article  CAS  PubMed  Google Scholar 

  55. Pedersen, P. L. (1976) ATP-dependent reactions catalyzed by inner membrane vesicles of rat liver mitochondria. Kinetics, substrate specificity, and bicarbonate sensitivity, J. Biol. Chem., 251, 934-940.

    CAS  PubMed  Google Scholar 

  56. Vambutas, V. K., and Racker, E. (1965) Partial resolution of the enzymes catalyzing photophosphorylation. I. Stimulation of photophosphorylation by a preparation of a latent, Ca++-dependent adenosine triphosphatase from chloroplasts, J. Biol. Chem., 240, 2660-2667.

    CAS  PubMed  Google Scholar 

  57. Struve, I., and Lüttge, U. (1987) Characteristics of MgATP2–-dependent electrogenic proton transport in tonoplast vesicles of the facultative crassulacean-acid-metabolism plant Mesembryanthemum crystallinum L., Planta, 170, 111-120, https://doi.org/10.1007/BF00392387.

    Article  CAS  PubMed  Google Scholar 

  58. Pacheco, G., Lippo de Bécemberg, I., Gonzalez de Alfonzo, R., and Alfonzo, M. J. (1996) Biochemical characterization of a V-ATPase of tracheal smooth muscle plasma membrane fraction, Biochim. Biophys. Acta, 1282, 182-192, https://doi.org/10.1016/0005-2736(96)00038-7.

    Article  PubMed  Google Scholar 

  59. Perlin, D. S., Latchney, L. R., Wise, J. G., and Senior, A. E. (1984) Specificity of the proton adenosine triphosphatase of Escherichia coli for adenine, guanine, and inosine nucleotides in catalysts and binding, Biochemistry, 23, 4998-5003, https://doi.org/10.1021/bi00316a026.

    Article  CAS  PubMed  Google Scholar 

  60. Suzuki, T., Wakabayashi, C., Tanaka, K., Feniouk, B. A., and Yoshida, M. (2011) Modulation of nucleotide specificity of thermophilic FOF1-ATP synthase by epsilon-subunit, J. Biol. Chem., 286, 16807-16813, https://doi.org/10.1074/jbc.M110.209965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. D’Auzac, J. (1977) ATPase membranaire de vacuoles lysosomales: les lutoides du latex d’Hevea brasiliensis, Phytochemistry, 16, 1881-1885, https://doi.org/10.1016/0031-9422(77)80088-5.

    Article  Google Scholar 

  62. Gräf, R., Harvey, W. R., and Wieczorek, H. (1996) Purification and properties of a Cytosolic V1-ATPase, J. Biol. Chem., 271, 20908-20913, https://doi.org/10.1074/jbc.271.34.20908.

    Article  PubMed  Google Scholar 

  63. Mayer, F., Lim, J. K., Langer, J. D., Kang, S. G., and Mueller, V. (2015) Na+ transport by the A(1)A(O)-ATP synthase purified from Thermococcus onnurineus and reconstituted into liposomes, J. Biol. Chem., 290, 6994-7002, https://doi.org/10.1074/jbc.M114.616862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Valiyaveetil, F. I., and Fillingame, R. H. (1997) On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli FOF1-ATP synthase, J. Biol. Chem., 272, 32635-32641, https://doi.org/10.1074/jbc.272.51.32635.

    Article  CAS  PubMed  Google Scholar 

  65. Glagolev, A. N., and Skulachev, V. P. (1978) The proton pump is a molecular engine of motile bacteria, Nature, 272, 280-282, https://doi.org/10.1038/272280a0.

    Article  CAS  PubMed  Google Scholar 

  66. Junge, W., Lill, H., and Engelbrecht, S. (1997) ATP synthase: an electrochemical transducer with rotatory mechanics, Trends Biochem. Sci., 22, 420-423, https://doi.org/10.1016/s0968-0004(97)01129-8.

    Article  CAS  PubMed  Google Scholar 

  67. Vik, S. B., and Antonio, B. J. (1994) A mechanism of proton translocation by F1FO ATP synthases suggested by double mutants of the a subunit, J. Biol. Chem., 269, 30364-30369.

    CAS  PubMed  Google Scholar 

  68. Srivastava, A. P., Luo, M., Zhou, W., Symersky, J., Bai, D., Chambers, M. G., et al. (2018) High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane, Science, 360, https://doi.org/10.1126/science.aas9699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. W., and Walker, J. E. (2005) Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae, Science, 308, 654-659, https://doi.org/10.1126/science.1110064.

    Article  CAS  PubMed  Google Scholar 

  70. Skulachev, V. P. (1984) Membrane bioenergetics – should we build the bridge across the river or alongside of it? Trends Biochem. Sci., 9, 182-185, https://doi.org/10.1016/0968-0004(84)90134-8.

    Article  Google Scholar 

  71. Skulachev, V. P. (1985) Membrane-linked energy transductions. Bioenergetic functions of sodium: H+ is not unique as a coupling ion, Eur. J. Biochem., 151, 199-208, https://doi.org/10.1111/j.1432-1033.1985.tb09088.x.

    Article  CAS  PubMed  Google Scholar 

  72. Dimroth, P., and Cook, G. M. (2004) Bacterial Na+- or H+-coupled ATP synthases operating at low electrochemical potential, Adv. Microb. Physiol., 49, 175-218.

    Article  CAS  Google Scholar 

  73. Mulkidjanian, A. Y., Dibrov, P., and Galperin, M. Y. (2008) The past and present of sodium energetics: may the sodium-motive force be with you, Biochim. Biophys. Acta, 1777, 985-992, https://doi.org/10.1016/j.bbabio.2008.04.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2008) Evolutionary primacy of sodium bioenergetics, Biol. Direct., 3, 13, https://doi.org/10.1186/1745-6150-3-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Poehlein, A., Schmidt, S., Kaster, A.-K., Goenrich, M., Vollmers, J., et al. (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis, PLoS One, 7, e33439, https://doi.org/10.1371/journal.pone.0033439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dibrova, D. V., Galperin, M. Y., and Mulkidjanian, A. Y. (2010) Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase, Bioinformatics, 26, 1473-1476, https://doi.org/10.1093/bioinformatics/btq234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schulz, S., WiIkes, M., Mills, D. J., Kuhlbrandt, W., and Meier, T. (2017) Molecular archifecture of the N-type ATPase rotor ring from Barkholderia pseudomallei, EMBO Rep., 18, 526-535, https://doi.org/10.15252/embr.201643374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Laubinger, W., and Dimroth, P. (1989) The sodium ion translocating adenosine triphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations, Biochemistry, 28, 7194-7198, https://doi.org/10.1021/bi00444a010.

    Article  CAS  PubMed  Google Scholar 

  79. Neumann, S., Matthey, U., and Kaim, G. (1998) Purification and properties of the F1Fo ATPase of Ilyobacter tartaricus, a sodium ion pump, J. Bacteriol., 180, 3312-3316, https://doi.org/10.1128/JB.180.13.3312-3316.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McMillan, D. G. G., Ferguson, S. A., Dey, D., Schröder, K., Aung, H. L., Carbone, V., et al. (2011) A1Ao-ATP synthase of Methanobrevibacter ruminantium couples sodium ions for ATP synthesis under physiological conditions, J. Biol. Chem., 286, 39882-39892, https://doi.org/10.1074/jbc.M111.281675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Murata, T., Yamato, I., Kakinuma, Y., Shirouzu, M., Walker, J. E., Yokoyama, S., et al. (2008) Ion binding and selectivity of the rotor ring of the Na+-transporting V-ATPase, Proc. Natl. Acad. Sci. USA, 105, 8607-8611, https://doi.org/10.1073/pnas.0800992105.

    Article  PubMed  Google Scholar 

  82. Meier, T., Krah, A., Bond, P. J., Pogoryelov, D., Diederichs, K., and Faraldo-Gómez, J. D. (2009) Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases, J. Mol. Biol., 391, 498-507, https://doi.org/10.1016/j.jmb.2009.05.082.

    Article  CAS  PubMed  Google Scholar 

  83. Krah, A., Pogoryelov, D., Langer, J. D., Bond, P. J., Meier, T., and Faraldo-Gómez, J. D. (2010) Structural and energetic basis for H+ versus Na+ binding selectivity in ATP synthase FO rotors, Biochim. Biophys. Acta, 1797, 763-772, https://doi.org/10.1016/j.bbabio.2010.04.014.

    Article  CAS  PubMed  Google Scholar 

  84. Leone, V., Pogoryelov, D., Meier, T., and Faraldo-Gómez, J. D. (2015) On the principle of ion selectivity in Na+/H+-coupled membrane proteins: experimental and theoretical studies of an ATP synthase rotor, Proc. Natl. Acad. Sci. USA, 112, 1057-1066, https://doi.org/10.1073/pnas.1421202112.

    Article  CAS  Google Scholar 

  85. Schlegel, K., Leone, V., Faraldo-Gómez, J. D., and Müller, V. (2012) Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation, Proc. Natl. Acad. Sci. USA, 109, 947-952, https://doi.org/10.1073/pnas.1115796109.

    Article  PubMed  Google Scholar 

  86. Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G. W., and Walker, J. E. (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria, Proc. Natl. Acad. Sci. USA, 107, 16823-16827, https://doi.org/10.1073/pnas.1011099107.

    Article  PubMed  Google Scholar 

  87. Ruppert, C., Kavermann, H., Wimmers, S., Schmid, R., Kellermann, J., Lottspeich, F., et al. (1999) The proteolipid of the A1AO ATP synthase from Methanococcus jannaschii has six predicted transmembrane helices but only two proton-translocating carboxyl groups, J. Biol. Chem., 274, 25281-25284, https://doi.org/10.1074/jbc.274.36.25281.

    Article  CAS  PubMed  Google Scholar 

  88. Wilms, R., Freiberg, C., Wegerle, E., Meier, I., Mayer, F., and Müller, V. (1996) Subunit structure and organization of the genes of the A1AO ATPase from the Archaeon Methanosarcina mazei Gö1, J. Biol. Chem., 271, 18843-18852, https://doi.org/10.1074/jbc.271.31.18843.

    Article  CAS  PubMed  Google Scholar 

  89. Steinert, K., Wagner, V., Kroth-Pancic, P. G., and Bickel-Sandkötter, S. (1997) Characterization and subunit structure of the ATP synthase of the halophilic archaeon Haloferax volcanii and organization of the ATP synthase genes, J. Biol. Chem., 272, 6261-6269, https://doi.org/10.1074/jbc.272.10.6261.

    Article  CAS  PubMed  Google Scholar 

  90. Kibak, H., Taiz, L., Starke, T., Bernasconi, P., and Gogarten, J. P. (1992) Evolution of structure and function of V-ATPases, J. Bioenerg. Biomembr., 24, 415-424, https://doi.org/10.1007/BF00762534.

    Article  CAS  PubMed  Google Scholar 

  91. Ihara, K., Watanabe, S., Sugimura, K.-I., Katagiri, I., and Mukohata, Y. (1997) Identification of proteolipid from an extremely halophilic archaeon Halobacterium salinarumas an N, N′-dicyclohexyl-carbodiimide binding subunit of ATP synthase, Arch. Biochem. Biophys., 341, 267-272, https://doi.org/10.1006/abbi.1997.9972.

    Article  CAS  PubMed  Google Scholar 

  92. Vonck, J., Pisa, K. Y., Morgner, N., Brutschy, B., and Müller, V. (2009) Three-dimensional structure of A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus by electron microscopy, J. Biol. Chem., 284, 10110-10119, https://doi.org/10.1074/jbc.M808498200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mayer, F., Leone, V., Langer, J. D., Faraldo-Gómez, J. D., and Müller, V. (2012) A c subunit with four transmembrane helices and one ion Na+-binding site in an archaeal ATP synthase: implications for c ring function and structure, J. Biol. Chem., 287, 39327-39337, https://doi.org/10.1074/jbc.M112.411223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Slesarev, A. I., Mezhevaya, K. V., Makarova, K. S., Polushin, N. N., Shcherbinina, O. V., et al. (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens, Proc. Natl. Acad. Sci. USA, 99, 4644-4649, https://doi.org/10.1073/pnas.032671499.

    Article  CAS  PubMed  Google Scholar 

  95. Müller, V., Aufurth, S., and Rahlfs, S. (2001) The Na+ cycle in Acetobacterium woodii: identification and characterization of a Na+ translocating F1F0-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids, Biochim. Biophys. Acta Bioenergetics, 1505, 108-120, https://doi.org/10.1016/S0005-2728(00)00281-4.

    Article  Google Scholar 

  96. Matthies, D., Zhou, W., Klyszejko, A. L., Anselmi, C., Yildiz, Ö., Brandt, K., et al. (2014) High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+-coupled ATP synthase, Nat. Commun., 5, 5286, https://doi.org/10.1038/ncomms6286.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pogoryelov, D., Klyszejko, A. L., Krasnoselska, G. O., Heller, E.-M., Leone, V., et al. (2012) Engineering rotor ring stoichiometries in the ATP synthase, Proc. Natl. Acad. Sci. USA, 109, 1599-1608, https://doi.org/10.1073/pnas.1120027109.

    Article  Google Scholar 

  98. Preiss, L., Klyszejko, A. L., Hicks, D. B., Liu, J., Fackelmayer, O. J., et al. (2013) The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4, Proc. Natl. Acad. Sci. USA, 110, 7874-7879, https://doi.org/10.1073/pnas.1303333110.

    Article  PubMed  Google Scholar 

  99. Veech, R. L., King, M. T., Pawlosky, R., Bradshaw, P. C., and Curtis, W. (2019) Relationship between inorganic ion distribution, resting membrane potential, and the ΔG’ of ATP hydrolysis: a new paradigm, FASEB J., 33, 13126-13130, https://doi.org/10.1096/fj.201901942R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hüttemann, M., Lee, I., Pecinova, A., Pecina, P., Przyklenk, K., and Doan, J. W. (2008) Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease, J. Bioener. Biomembr., 40, 445-456, https://doi.org/10.1007/s10863-008-9169-3.

    Article  CAS  Google Scholar 

  101. Hisabori, T., Konno, H., Ichimura, H., Strotmann, H., and Bald, D. (2002) Molecular devices of chloroplast F1-ATP synthase for the regulation, Biochim. Biophys. Acta Bioenergetics, 1555, 140-146, https://doi.org/10.1016/S0005-2728(02)00269-4.

    Article  CAS  Google Scholar 

  102. Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database, Nucleic Acids Res., 43, 261-269, https://doi.org/10.1093/nar/gku1223.

    Article  CAS  Google Scholar 

  103. Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev., 94, 909-950, https://doi.org/10.1152/physrev.00026.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., et al. (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore, Proc. Natl. Acad. Sci. USA, 110, 5887-5892, https://doi.org/10.1073/pnas.1217823110.

    Article  CAS  PubMed  Google Scholar 

  105. Carroll, J., He, J., Ding, S., Fearnley, I. M., and Walker, J. E. (2019) Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase, Proc. Natl. Acad. Sci. USA, 116, 12816-12821, https://doi.org/10.1073/pnas.1904005116.

    Article  CAS  PubMed  Google Scholar 

  106. Hirata, T., Nakamura, N., Omote, H., Wada, Y., and Futai, M. (2000) Regulation and reversibility of vacuolar H+-ATPase, J. Biol. Chem., 275, 386-389, https://doi.org/10.1074/jbc.275.1.386.

    Article  CAS  PubMed  Google Scholar 

  107. Forgac, M. (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology, Nat. Rev. Mol. Cell Biol., 8, 917-929, https://doi.org/10.1038/nrm2272.

    Article  CAS  PubMed  Google Scholar 

  108. McGuire, C., Stransky, L., Cotter, K., and Forgac, M. (2017) Regulation of V-ATPase activity, Front. Biosci., 22, 609-622, https://doi.org/10.2741/4506.

    Article  CAS  Google Scholar 

  109. Huang, C., and Chang, A. (2011) pH-dependent cargo sorting from the Golgi, J. Biol. Chem., 286, 10058-10065, https://doi.org/10.1074/jbc.M110.197889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kozik, P., Hodson, N. A., Sahlender, D. A., Simecek, N., Soromani, C., Wu, J., et al. (2013) A human genome-wide screen for regulators of clathrin-coated vesicle formation reveals an unexpected role for the V-ATPase, Nat. Cell Biol., 15, 50-60, https://doi.org/10.1038/ncb2652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Futai, M., Sun-Wada, G.-H., Wada, Y., Matsumoto, N., and Nakanishi-Matsui, M. (2019) Vacuolar-type ATPase: a proton pump to lysosomal trafficking, Proc. Japan Acad. Series B Physic. Biol. Sci., 95, 261-277, https://doi.org/10.2183/pjab.95.018.

    Article  CAS  Google Scholar 

  112. Finberg, K. E., Wagner, C. A., Bailey, M. A., Paunescu, T. G., Breton, S., Brown, D., et al. (2005) The B1-subunit of the H+ ATPase is required for maximal urinary acidification, Proc. Natl. Acad. Sci. USA, 102, 13616-13621, https://doi.org/10.1073/pnas.0506769102.

    Article  CAS  PubMed  Google Scholar 

  113. Cotter, K., Stransky, L., McGuire, C., and Forgac, M. (2015) Recent insights into the structure, regulation, and function of the V-ATPases, Trends Biochem. Sci., 40, 611-622, https://doi.org/10.1016/j.tibs.2015.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Almeida, D. M., Oliveira, M. M., and Saibo, N. J. M. (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants, Genet. Mol. Biol., 40, 326-345, https://doi.org/10.1590/1678-4685-GMB-2016-0106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., and Sabatini, D. M. (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase, Science, 334, 678-683, https://doi.org/10.1126/science.1207056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Feniouk, B. A., and Yoshida, M. (2008) Regulatory mechanisms of proton-translocating FOF1-ATP synthase, Results Problems Cell Differ., 45, 279-308, https://doi.org/10.1007/400_2007_043.

    Article  CAS  Google Scholar 

  117. Feniouk, B. A., Suzuki, T., and Yoshida, M. (2006) The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase, Biochim. Biophys. Acta, 1757, 326-338, https://doi.org/10.1016/j.bbabio.2006.03.022.

    Article  CAS  PubMed  Google Scholar 

  118. Gledhill, J. R., Montgomery, M. G., Leslie, A. G. W., and Walker, J. E. (2007) How the regulatory protein, IF1, inhibits F1-ATPase from bovine mitochondria, Proc. Natl. Acad. Sci. USA, 104, 15671-15676, https://doi.org/10.1073/pnas.0707326104.

    Article  PubMed  Google Scholar 

  119. Morales-Ríos, E., de la Rosa-Morales, F., Mendoza-Hernández, G., Rodríguez-Zavala, J. S., Celis, H., et al. (2010) A novel 11-kDa inhibitory subunit in the F1FO ATP synthase of Paracoccus denitrificans and related alpha-proteobacteria, FASEB J., 24, 599-608, https://doi.org/10.1096/fj.09-137356.

    Article  CAS  PubMed  Google Scholar 

  120. Yokoyama, K., Muneyuki, E., Amano, T., Mizutani, S., Yoshida, M., Ishida, M., et al. (1998) V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP, J. Biol. Chem., 273, 20504-20510, https://doi.org/10.1074/jbc.273.32.20504.

    Article  CAS  PubMed  Google Scholar 

  121. Nakano, M., Imamura, H., Toei, M., Tamakoshi, M., Yoshida, M., and Yokoyama, K. (2008) ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus, J. Biol. Chem., 283, 20789-20796, https://doi.org/10.1074/jbc.M801276200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Singh, D., and Grüber, G. (2018) Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A1 complex of the A1AO ATP synthase, J. Struct. Biol., 201, 26-35, https://doi.org/10.1016/j.jsb.2017.10.008.

    Article  CAS  PubMed  Google Scholar 

  123. Kishikawa, J.-I., Nakanishi, A., Furuike, S., Tamakoshi, M., and Yokoyama, K. (2014) Molecular basis of ADP inhibition of vacuolar (V)-type ATPase/synthase, J. Biol. Chem., 289, 403-412, https://doi.org/10.1074/jbc.M113.523498.

    Article  CAS  PubMed  Google Scholar 

  124. Lapashina, A. S., Prikhodko, A. S., Shugaeva, T. E., and Feniouk, B. A. (2019) Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in Escherichia coli ATP synthase, Biochim. Biophys. Acta Bioenerg., 1860, 181-188, https://doi.org/10.1016/j.bbabio.2018.12.003.

    Article  CAS  PubMed  Google Scholar 

  125. Lapashina, A. S., and Feniouk, B. A. (2019) Mutation Q259L in subunit beta in Bacillus subtilis ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures, Biochem. Biophys. Res. Commun., 509, 102-107, https://doi.org/10.1016/j.bbrc.2018.12.075.

    Article  CAS  PubMed  Google Scholar 

  126. David, P., and Baron, R. (1994) The catalytic cycle of the vacuolar H+-ATPase. Comparison of proton transport in kidney- and osteoclast-derived vesicles, J. Biol. Chem., 269, 30158- 30163.

    CAS  PubMed  Google Scholar 

  127. Moriyama, Y., and Nelson, N. (1987) Nucleotide binding sites and chemical modification of the chromaffin granule proton ATPase, J. Biol. Chem., 262, 14723-14729.

    CAS  PubMed  Google Scholar 

  128. Webster, L. C., Pérez-Castiñeira, J. R., Atkins, G. L., and Apps, D. K. (1995) Allosteric regulation of proton translocation by a vacuolar adenosinetriphosphatase, Eur. J. Biochem., 232, 586-595, https://doi.org/10.1111/j.1432-1033.1995.586zz.x.

    Article  CAS  PubMed  Google Scholar 

  129. Vasilyeva, E., and Forgac, M. (1998) Interaction of the clathrin-coated vesicle V-ATPase with ADP and sodium azide, J. Biol. Chem., 273, 23823-23829, https://doi.org/10.1074/jbc.273.37.23823.

    Article  CAS  PubMed  Google Scholar 

  130. Kishikawa, J.-I., Seino, A., Nakanishi, A., Tirtom, N. E., Noji, H., Yokoyama, K., et al. (2014) F-subunit reinforces torque generation in V-ATPase, Eur. Biophys. J., 43, 415-422, https://doi.org/10.1007/s00249-014-0973-x.

    Article  CAS  PubMed  Google Scholar 

  131. Singh, D., Sielaff, H., Sundararaman, L., Bhushan, S., and Grüber, G. (2016) The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase, Biochim. Biophys. Acta, 1857, 177-187, https://doi.org/10.1016/j.bbabio.2015.12.003.

    Article  CAS  PubMed  Google Scholar 

  132. Singh, D., Sielaff, H., Börsch, M., and Grüber, G. (2017) Conformational dynamics of the rotary subunit F in the A3B3DF complex of Methanosarcina mazei Gö1 A-ATP synthase monitored by single-molecule FRET, FEBS Lett., 591, 854-862, https://doi.org/10.1002/1873-3468.12605.

    Article  CAS  PubMed  Google Scholar 

  133. Saijo, S., Arai, S., Hossain, K. M. M., Yamato, I., Suzuki, K., Kakinuma, Y., et al. (2011) Crystal structure of the central axis DF complex of the prokaryotic V-ATPase, Proc. Natl. Acad. Sci. USA, 108, 19955-19960, https://doi.org/10.1073/pnas.1108810108.

    Article  PubMed  Google Scholar 

  134. Akanuma, G., Tagana, T., Sawada, M., Suzuki, S., Shimada, T., Tanaka, K., et al. (2019) C-terminal regulatory domain of the ε subunit of FOF1 ATP synthase enhances the ATP-dependent H+ pumping that is involved in the maintenance of cellular membrane potential in Bacillus subtilis, Microbiol. Open, 8, e00815, https://doi.org/10.1002/mbo3.815.

    Article  CAS  Google Scholar 

  135. Kishikawa, J.-I., Ibuki, T., Nakamura, S., Nakanishi, A., Minamino, T., Miyata, T., et al. (2013) Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus, PLoS One, 8, e64695, https://doi.org/10.1371/journal.pone.0064695.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Balakrishna, A. M., Basak, S., Manimekalai, M. S. S., and Grüber, G. (2015) Crystal structure of subunits D and F in complex gives insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae, J. Biol. Chem., 290, 3183-3186, https://doi.org/10.1074/jbc.M114.622688.

    Article  CAS  PubMed  Google Scholar 

  137. Kane, P. M. (2012) Targeting reversible disassembly as a mechanism of controlling V-ATPase activity, Curr. Protein Peptide Sci., 13, 117-123, https://doi.org/10.2174/138920312800493142.

    Article  CAS  Google Scholar 

  138. Tabke, K., Albertmelcher, A., Vitavska, O., Huss, M., Schmitz, H.-P., and Wieczorek, H. (2014) Reversible disassembly of the yeast V-ATPase revisited under in vivo conditions, Biochem. J., 462, 185-197, https://doi.org/10.1042/BJ20131293.

    Article  CAS  PubMed  Google Scholar 

  139. Beltrán, C., and Nelson, N. (1992) The membrane sector of vacuolar H(+)-ATPase by itself is impermeable to protons, Acta Physiol. Scandinavica Suppl., 607, 41-47.

    Google Scholar 

  140. Zhang, J., Myers, M., and Forgac, M. (1992) Characterization of the VO domain of the coated vesicle (H+)-ATPase, J. Biol. Chem., 267, 9773-9778.

    CAS  PubMed  Google Scholar 

  141. Qi, J., and Forgac, M. (2008) Function and subunit interactions of the N-terminal domain of subunit a (Vph1p) of the yeast V-ATPase, J. Biol. Chem., 283, 19274-19282, https://doi.org/10.1074/jbc.M802442200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Couoh-Cardel, S., Milgrom, E., and Wilkens, S. (2015) Affinity purification and structural features of the yeast vacuolar ATPase VO membrane sector, J. Biol. Chem., 290, 27959-27971, https://doi.org/10.1074/jbc.M115.662494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hayek, S. R., Rane, H. S., and Parra, K. J. (2019) Reciprocal regulation of V-ATPase and glycolytic pathway elements in health and disease, Front. Physiol., 10, 127, https://doi.org/10.3389/fphys.2019.00127.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Lu, M., Ammar, D., Ives, H., Albrecht, F., and Gluck, S. L. (2007) Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump, J. Biol. Chem., 282, 24495-24503, https://doi.org/10.1074/jbc.M702598200.

    Article  CAS  PubMed  Google Scholar 

  145. Chan, C.-Y., and Parra, K. J. (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly, J. Biol. Chem., 289, 19448-19457, https://doi.org/10.1074/jbc.M114.569855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Feng, Y., and Forgac, M. (1992) A novel mechanism for regulation of vacuolar acidification, J. Biol. Chem., 267, 19769-19772.

    CAS  PubMed  Google Scholar 

  147. Feng, Y., and Forgac, M. (1994) Inhibition of vacuolar H+-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A, J. Biol.Chem., 269, 13224-13230.

    CAS  PubMed  Google Scholar 

  148. Forgac, M. (1999) The vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione, J. Biol. Chem., 274, 1301-1305, https://doi.org/10.1074/jbc.274.3.1301.

    Article  CAS  PubMed  Google Scholar 

  149. Dschida, W. J., and Bowman, B. J. (1995) The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation, J. Biol. Chem., 270, 1557-1563, https://doi.org/10.1074/jbc.270.4.1557.

    Article  CAS  PubMed  Google Scholar 

  150. Liu, Q., Leng, X. H., Newman, P. R., Vasilyeva, E., Kane, P. M., and Forgac, M. (1997) Site-directed mutagenesis of the yeast V-ATPase A subunit, J. Biol. Chem., 272, 11750-11756, https://doi.org/10.1074/jbc.272.18.11750.

    Article  CAS  PubMed  Google Scholar 

  151. Oluwatosin, Y. E., and Kane, P. M. (1997) Mutations in the CYS4 gene provide evidence for regulation of the yeast vacuolar H+-ATPase by oxidation and reduction in vivo, J. Biol. Chem., 272, 28149-28157, https://doi.org/10.1074/jbc.272.44.28149.

    Article  CAS  PubMed  Google Scholar 

  152. Hager, A., and Lanz, C. (1989) Essential sulfhydryl groups in the catalytic center of the tonoplast H+-ATPase from coleoptiles of Zea mays L. as demonstrated by the biotin-streptavidin-peroxidase system, Planta, 180, 116-212, https://doi.org/10.1007/BF02411417.

    Article  CAS  PubMed  Google Scholar 

  153. Seidel, T., Scholl, S., Krebs, M., Rienmüller, F., Marten, I., Hedrich, R., et al. (2012) Regulation of the V-type ATPase by redox modulation, Biochem. J., 448, 243-251, https://doi.org/10.1042/BJ20120976.

    Article  CAS  PubMed  Google Scholar 

  154. Hards, K., and Cook, G. M. (2018) Targeting bacterial energetics to produce new antimicrobials, Drug Resist. Updates: Rev.Comm. Antimicrob. Anticancer Chemother., 36, 1-12, https://doi.org/10.1016/j.drup.2017.11.001.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vladimir P. Skulachev for the unique and inspiring atmosphere at the Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University (MSU). The authors also highly appreciate his effort in founding the MSU Faculty of Bioengineering and Bioinformatics, without which this work would never have been written.

Funding

This work was supported by the Russian Science Foundation (project no. 20-14-00268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Feniouk.

Ethics declarations

The authors declare no conflict of interest. This article does not contain a description of studies with the involvement of humans or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubareva, V.M., Lapashina, A.S., Shugaeva, T.E. et al. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences. Biochemistry Moscow 85, 1613–1630 (2020). https://doi.org/10.1134/S0006297920120135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920120135

Keywords

Navigation