Nonphosphorylating Oxidation in Mitochondria and Related Processes

Abstract

The mechanism of oxidative phosphorylation and its regulation remain one of the main problems of bioenergetics. Efficiency of the mitochondrial energization is determined by the relationship between the rate of generation of electrochemical potential of hydrogen ions and the rate of its expenditure on the synthesis of ATP and the use of ATP in endergonic reactions. Uncoupling (partial or complete), which occurs in the process of uncontrolled and controlled leakage of ions through the inner mitochondrial membrane, on the one hand leads to the decrease in the relative synthesis of ATP, and on the other, being consistent with the law of conservation of energy, leads to the formation of heat, generation of which is an essential function of the organism. In addition to increased thermogenesis, the increase of non-phosphorylating oxidation of various substrates is accompanied by the decrease in transmembrane potential, production of reactive oxygen species, and activation of oxygen consumption, water and carbon dioxide production, increase in the level of intracellular ADP and acidification of the cytosol. In this analysis, each of these factors will be considered separately for its role in regulating metabolism.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

References

  1. 1

    Brand, M. D., Chien, L. F., Ainscow, E. K., Rolfe, D. F., and Porter, R. K. (1994) The causes and functions of mitochondrial proton leak, Biochim. Biophys. Acta, 1187, 132-139, https://doi.org/10.1016/0005-2728(94)90099-x.

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Skulachev, V. P., and Maslov, S. P. (1960) The role of oxidation in thermopregulation, Biochemistry (Moscow), 25, 1058-1064.

    Google Scholar 

  3. 3

    Skulachev, V. P. (1961) Regulation of the coupling of oxidation and phosphorylation, 5th Internat. Cong. of Biochem. (Moscow), 5, 367-373.

  4. 4

    Skulachev, V. P., Maslov, S. P., Sivkova, V. G., Kalinichenko, L. P., and Maslova, G. M. (1963) Cold-induced uncoupling of oxidation and phosphorylation in muscles of white mice, Biochemistry (Moscow), 28, 70-79.

    CAS  Google Scholar 

  5. 5

    Nedergaard, J., and Cannon, B. (2018) Brown adipose tissue as a heat-producing thermoeffector, Handb. Clin. Neurol., 156, 137-152, https://doi.org/10.1016/B978-0-444-63912-7.00009-6.

    Article  PubMed  Google Scholar 

  6. 6

    Yaniv, Y., Juhaszova, M., Nuss, H. B., Wang, S., Zorov, D. B., Lakatta, E. G., and Sollott, S. J. (2010) Matching ATP supply and demand in mammalian heart: in vivo, in vitro, and in silico perspectives, Ann. N. Y. Acad. Sci., 1188, 133-142, https://doi.org/10.1111/j.1749-6632.2009.05093.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Maley, G. F., and Lardi, H. A. (1953) Metabolic effects of thyroid hormones in vitro. II. Influence of thyroxine and triiodothyronine on oxidative phosphorylation, J. Biol. Chem., 204, 435-444, PMID: 13084614.

    CAS  PubMed  Google Scholar 

  8. 8

    Hoch, F. L., and Lipmann, F. (1954) The uncoupling of respiration and phosphorylation by thyroid hormones, Proc. Natl. Acad. Sci. USA, 40, 909-921, https://doi.org/10.1073/pnas.40.10.909.

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Dickens, F., and Salmony, D. (1956) Effects of thyroid hormones in vitro on tissue respiration, oxidative phosphorylation and the swelling of mitochondria, Biochem. J., 64, 645-651, https://doi.org/10.1042/bj0640645.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Skulachev, V. P. (1998) Uncoupling: new approaches to an old problem of bioenergetics, Biochim. Biophys. Acta, 1363, 100-124, https://doi.org/10.1016/s0005-2728(97)00091-1.

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15-18, https://doi.org/10.1016/s0014-5793(97)01159-9.

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Zorov, D. B., Krasnikov, B. F., Kuzminova, A. E., Vysokikh, M. Yu., and Zorova, L. D. (1997) Mitochondria revisited. Alternative functions of mitochondria, Bios. Rep., 17, 507-520, https://doi.org/10.1023/a:1027304122259.

    CAS  Article  Google Scholar 

  13. 13

    Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes, J. Exp. Med., 192, 1001-1014, https://doi.org/10.1084/jem.192.7.1001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2006) Mitochondrial ROS-induced ROS release: an update and review, Biochim. Biophys. Acta, 1757, 509-517, https://doi.org/10.1016/j.bbabio.2006.04.029.

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev., 94, 909-950, https://doi.org/10.1152/physrev.00026.2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Zorov, D. B., Bannikova, S. Y., Belousov, V. V., Vyssokikh, M. Y., Zorova, L. D., Isaev, N. K., Krasnikov, B. F., and Plotnikov, E. Y. (2005) Reactive oxygen and nitrogen species: friends or foes, Biochemistry (Moscow), 70, 215-221.

    CAS  Article  Google Scholar 

  17. 17

    Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076-1078, https://doi.org/10.1038/2221076a0.

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Andreyev, A. Yu., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria, Eur. J. Biochem., 182, 585-592, https://doi.org/10.1111/j.1432-1033.1989.tb14867.x.

    Article  PubMed  Google Scholar 

  19. 19

    Wieckowski, M. R., and Wojtczak, L. (1997) Involvement of the dicarboxylate carrier in the protonophoric action of long-chain fatty acids in mitochondria, Biochem. Biophys. Res. Commun., 232, 414-417, https://doi.org/10.1006/bbrc.1997.6298.

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Samartsev, V. N., Smirnov, A. V., Zeldi, I. P., Markova, O. V., Mokhova, E. N., and Skulachev, V. P. (1997) Involvement of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria, Biochim. Biophys. Acta, 1319, 251-257, https://doi.org/10.1016/s0005-2728(96)00166-1.

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Rupprecht, A., Sokolenko, E. A., Beck, V., Ninnemann, O., Jaburek, M., Trimbuch, T., Klishin, S. S., Jezek, P., Skulachev, V. P., and Pohl, E. E. (2010) Role of the transmembrane potential in the membrane protein leak, Biophys. J., 98, 1503-1511, https://doi.org/10.1016/j.bpj.2009.12.4301.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Bertholet, A. M., Chouchani, E. T., Kazak, L., Angelin, A., Fedorenko, A., et al. (2019) H+ transport is an integral function of the mitochondrial ADP/ATP carrier, Nature, 571, 515-520, https://doi.org/10.1038/s41586-019-1400-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Chrétien, D., Bénit, P., Ha, H. H., Keipert, S., El-Khoury, R., et al. (2018) Mitochondria are physiologically maintained at close to 50°C, PLoS Biol., 16, e2003992, https://doi.org/10.1371/journal.pbio.2003992.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Starkov, A. A., Dedukhova, V. I., and Skulachev, V. P. (1994) 6-ketocholestanol abolishes the effect of the most potent uncouplers of oxidative phosphorylation in mitochondria, FEBS Lett., 355, 305-308, https://doi.org/10.1016/0014-5793(94)01211-3.

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Lehninger, A. L. (1962) Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation, Physiol. Rev., 42, 467-517, https://doi.org/10.1152/physrev.1962.42.3.467.

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Solenski, N. J., diPierro, C. G., Trimmer, P. A., Kwan, A. L., and Helm, G. A. (2002) Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia, Stroke, 33, 816-824, https://doi.org/10.1161/hs0302.104541.

    Article  PubMed  Google Scholar 

  27. 27

    Kaasik, A., Kuum, M., Joubert, F., Wilding, J., Ventura-Clapier, R., and Veksler, V. (2010) Mitochondria as a source of mechanical signals in cardiomyocytes, Cardiovasc. Res., 87, 83-91, https://doi.org/10.1093/cvr/cvq039.

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Zorov, D. B., Vorobjev, I. A., Popkov, V. A., Babenko, V. A., Zorova, L. D., et al. (2019) Lessons from the discovery of mitochondrial fragmentation (fission): a review and update, Cells, 8, 175, https://doi.org/10.3390/cells8020175.

    CAS  Article  PubMed Central  Google Scholar 

  29. 29

    Ware, A. J., D’Agostino, A. N., and Combes, B. (1971) Cerebral edema: a major complication of massive hepatic necrosis, Gastroenterology, 61, 877-884, PMID: 125688.

    CAS  Article  Google Scholar 

  30. 30

    Durward, Q. J., Del Maestro, R. F., Amacher, A. L., and Farrar, J. K. (1983) The influence of systemic arterial pressure and intracranial pressure on the development of cerebral vasogenic edema, J. Neurosurg., 59, 803-809, https://doi.org/10.3171/jns.1983.59.5.0803.

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Preston, E., and Webster, J. (2004) A two-hour window for hypothermic modulation of early events that impact delayed opening of the rat blood-brain barrier after ischemia, Acta Neuropathol., 108, 406-412, https://doi.org/10.1007/s00401-004-0905-4.

    Article  PubMed  Google Scholar 

  32. 32

    Schmidt, B., McCracken, J., and Ferguson-Miller, S. (2003) A discrete water exit pathway in the membrane protein cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 100, 15539-15542, https://doi.org/10.1073/pnas.2633243100.

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Zimmerberg, J., and Parsegian, V. A. (1987) Water movement during channel opening and closing, J. Bioenerg. Biomembr., 19, 351-358, https://doi.org/10.1007/BF00768538.

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Gena, P., Fanelli, E., Brenner, C., Svelto, M., and Calamita, G. (2009) News and views on mitochondrial water transport, Front. Biosci. (Landmark Ed.), 14, 4189-4419, https://doi.org/10.2741/3522.

    CAS  Article  Google Scholar 

  35. 35

    Lee, W. K., and Thévenod, F. (2006) A role for mitochondrial aquaporins in cellular life-and-death decisions? Am. J. Physiol. Cell Physiol., 291, 195-202, https://doi.org/10.1152/ajpcell.00641.2005.

    CAS  Article  Google Scholar 

  36. 36

    Calamita, G., Gena, P., Meleleo, D., Ferri, D., and Svelto, M. (2006) Water permeability of rat liver mitochondria: a biophysical study, Biochim. Biophys. Acta, 1758, 1018-1024, https://doi.org/10.1016/j.bbamem.2006.07.008.

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Saparov, S. M., Liu, K., Agre, P., and Pohl, P. (2007) In vitro analysis and modification of aquaporin pore selectivity, J. Biol. Chem., 282, 5296-5301, https://doi.org/10.1074/jbc.M609343200.

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Juhaszova, M., Zorov, D. B., Kim, S. H., Pepe, S., Fu, Q., et al. (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore, J. Clin. Invest., 113, 1535-1549, https://doi.org/10.1172/JCI19906.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Halestrap, A. P. (1989) The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism, Biochim. Biophys. Acta, 973, 355-382, https://doi.org/10.1016/s0005-2728(89)80378-0.

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Konstantinova, S. A., Mannella, C. A., Skulachev, V. P., and Zorov, D. B. (1995) Immunoelectron microscopic study of the distribution of porin on outer membranes of rat heart mitochondria, J. Bioenerg. Biomembr., 27, 93-99, https://doi.org/10.1007/BF02110336.

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Maeder, C. I., Shen, K., and Hoogenraad, C. C., (2014) Axon and dendritic trafficking, Curr. Opin. Neurobiol., 27, 165-170, https://doi.org/10.1016/j.conb.2014.03.015.

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Melkov, A., and Abdu, U. (2018) Regulation of long-distance transport of mitochondria along microtubules, Cell. Mol. Life Sci., 75, 163-176, https://doi.org/10.1007/s00018-017-2590-1.

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., et al. (2018) Mitochondrial membrane potential, Anal. Biochem., 552, 50-59, https://doi.org/10.1016/j.ab.2017.07.009.

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Rizack, M. A. (1964) An epinephrine-sensitive lipolytic activity in adipose tissue, J. Biol. Chem., 236, 657-662, PMID: 14169136.

    Google Scholar 

  45. 45

    Eastman, A. (1994) Deoxyribonuclease II in apoptosis and the significance of intracellular acidification, Cell Death Differ., 1, 7-9, PMID: 17180001.

    CAS  PubMed  Google Scholar 

  46. 46

    Gottlieb, R. A., Giesing, H. A., Zhu, J. Y., Engler, R. L., and Babior, B. M. (1995) Cell acidification in apoptosis: granulocyte colony-stimulating factor delays programmed cell death in neutrophils by up-regulating the vacuolar H(+)-ATPase, Proc. Natl. Acad. Sci. USA, 92, 5965-5968, https://doi.org/10.1073/pnas.92.13.5965.

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Silachev, D. N., Gulyaev, M. V., Zorova, L. D., Khailova, L. S., Gubsky, L. V., et al. (2015) Magnetic resonance spectroscopy of the ischemic brain under lithium treatment. Link to mitochondrial disorders under stroke, Chem. Biol. Interact., 237, 175-182, https://doi.org/10.1016/j.cbi.2015.06.012.

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Steinberg, G. R., and Kemp, B. E. (2009) AMPK in health and disease, Physiol. Rev., 89, 1025-1078, https://doi.org/10.1152/physrev.00011.2008.

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses tom injury, Nature, 464, 104-107, https://doi.org/10.1038/nature08780.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F., and Varani, K. (2015) Pharmacology of adenosine receptors: the state of the art, Physiol. Rev., 98, 1591-1625, https://doi.org/10.1152/physrev.00049.2017.

    CAS  Article  Google Scholar 

  51. 51

    Kang, J., Kang, N., Lovatt, D., Torres, A., Zhao, Z., Lin, J., and Nedergaard, M. (2008) Connexin 43 hemichannels are permeable to ATP, J. Neurosci., 28, 4702-4711, https://doi.org/10.1523/JNEUROSCI.5048-07.2008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Chekeni, F. B., Elliott, M. R., Sandilos, J. K., Walk, S. F., Kinchen, J. M., et al. (2010) Pannexin 1 channels mediate “find-me” signal release and membrane permeability during apoptosis, Nature, 467, 863-867, https://doi.org/10.1038/nature09413.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Roos, A., and Boron, W. F. (1981) Intracellular pH, Physiol. Rev., 61, 296-434, https://doi.org/10.1152/physrev.1981.61.2.296.

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Aickin, C. C. (1986) Intracellular pH regulation by vertebrate muscle, Annu. Rev. Physiol., 48, 349-361, https://doi.org/10.1146/annurev.ph.48.030186.002025.

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Inserte, J., Barba, I., Hernando, V., Abellán, A., Ruiz-Meana, M., Rodríguez-Sinovas, A., and Garcia-Dorado, D. (2008) Effect of acidic reperfusion on prolongation of intracellular acidosis and myocardial salvage, Cardiovasc. Res., 77, 782-790, https://doi.org/10.1093/cvr/cvm082.

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Pullman, M. E., and Monroe, G. C. (1963) A naturally occurring inhibitor of mitochondrial adenosine triphosphatase, J. Biol. Chem., 238, 3762-3769, PMID: 14109217.

    CAS  PubMed  Google Scholar 

  57. 57

    Di Lisa, F., Blank, P. S., Colonna, R., Gambassi, G., Silverman, H. S., Stern, M. D., and Hansford, R. G. (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition, J. Physiol., 486, 1-13, https://doi.org/10.1113/jphysiol.1995.sp020786.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Queliconi, B. B., Kowaltowski, A. J., and Gottlieb, R. A. (2016) Bicarbonate increases ischemia-reperfusion damage by inhibiting mitophagy, PLoS One, 11, e0167678, https://doi.org/10.1371/journal.pone.0167678.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Zorov, D. B., Popkov, V. A., Zorova, L. D., Vorobjev, I. A., Pevzner, I. B., et al. (2017) Mitochondrial aging: is there a mitochondrial clock? J. Gerontol. A Biol. Sci. Med. Sci., 72, 1171-1179, https://doi.org/10.1093/gerona/glw184.

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Liochev, S. I., and Fridovich, I. (2002) Copper, zinc superoxide dismutase and H2O2. Effects of bicarbonate on inactivation and oxidations of NADPH and urate, and on consumption of H2O2, J. Biol. Chem., 277, 34674-34678, https://doi.org/10.1074/jbc.M204726200.

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Medinas, D. B., Cerchiaro, G., Trindade, D. F., and Augusto, O. (2007) The carbonate radical and related oxidants derived from bicarbonate buffer, IUBMB Life, 59, 255-262, https://doi.org/10.1080/15216540701230511.

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Queiroz, R. F., Paviani, V., Coelho, F. R., Marques, E. F., Di Mascio, P., and Augusto, O. (2013) The carbonylation and covalent dimerization of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity is inhibited by the radical scavenger tempol, Biochem. J., 455, 37-46, https://doi.org/10.1042/BJ20130180.

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Queliconi, B. B., Marazzi, T. B., Vaz, S. M., Brookes, P. S., Nehrke, K., Augusto, O., and Kowaltowski, A. J. (2013) Bicarbonate modulates oxidative and functional damage in ischemia-reperfusion, Free Radic. Biol. Med., 55, 46-53, https://doi.org/10.1016/j.freeradbiomed.2012.11.007.

    CAS  Article  PubMed  Google Scholar 

  64. 64

    Kumar, S., Flacke, J., Kostin, S., Appukuttan, A., Reusch, H. P., and Ladilov, Y. (2011) SLC4A7 sodium bicarbonate cotransporter controls mitochondrial apoptosis in ischaemic coronary endothelial cells, Cardiovasc. Res., 89, 392-400, https://doi.org/10.1093/cvr/cvq330.

    CAS  Article  PubMed  Google Scholar 

  65. 65

    Alka, K., and Casey, J. R. (2014) Bicarbonate transport in health and disease, IUBMB Life, 66, 596-615, https://doi.org/10.1002/iub.1315.

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Nozik-Grayck, E., Huang, Y.-C. T., Carraway, M. S., and Piantadosi, C. (2003) Bicarbonate-dependent superoxide release and pulmonary artery tone, Am. J. Physiol. Heart Circ. Physiol., 285, 2327-2335, https://doi.org/10.1152/ajpheart.00507.2003.

    Article  Google Scholar 

  67. 67

    Acin-Perez, R., Salazar, E., Kamenetsky, M., Buck, J., Levin, L. R., and Manfredi, G. (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation, Cell Metabol., 9, 265-276, https://doi.org/10.1016/j.cmet.2009.01.012.

    CAS  Article  Google Scholar 

  68. 68

    Zeylemaker, W. P., Klaasse, A. D., Slater, E. C., and Veeger, C. (1970) Studies on succinate dehydrogenase. VI. Inhibition by monocarboxylic acids, Biochim. Biophys. Acta, 198, 415-422, https://doi.org/10.1016/0005-2744(70)90120-8.

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Kasho, V. N., and Boyer, P. D. (1984) Relationships of inosine triphosphate and bicarbonate effects on F1-ATPase to the binding change mechanism, J. Bioenerg. Biomembr., 16, 407-419, https://doi.org/10.1007/BF00743235.

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Roveri, O. A., and Calcaterra, N. B. (1985) Steady-state kinetic of F1-ATPase. Mechanism of anion activation, FEBS Lett., 192, 123-127, https://doi.org/10.1016/0014-5793(85)80056-9.

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Lodeyro, A. F., Calcaterra, N. B., and Roveri, O. A. (2001) Inhibition of steady-state mitochondrial ATP synthesis by bicarbonate, an activating anion of ATP hydrolysis, Biochim. Biophys. Acta, 1506, 236-243, https://doi.org/10.1016/s0005-2728(01)00221-3.

    CAS  Article  PubMed  Google Scholar 

  72. 72

    Khailova, L. S., Vygodina, T. V., Lomakina, G. Y., Kotova, E. A., and Antonenko, Y. N. (2020) Bicarbonate suppresses mitochondrial membrane depolarization induced by conventional uncouplers, Biochem. Biophys. Res. Commun., 530, 29-34, https://doi.org/10.1016/j.bbrc.2020.06.131.

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (project no. 19-14-00173).

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. B. Zorov.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zorov, D.B., Andrianova, N.V., Babenko, V.A. et al. Nonphosphorylating Oxidation in Mitochondria and Related Processes. Biochemistry Moscow 85, 1570–1577 (2020). https://doi.org/10.1134/S0006297920120093

Download citation

Keywords

  • mitochondria
  • water
  • thermogenesis
  • swelling
  • bioenergetics
  • uncoupling