Skip to main content
Log in

CD44-Associated Tn Antigen as a New Biomarker of Tumor Cells with Aberrant Glycosylation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Tn antigen is a tumor-associated antigen that appears on cancer cells as a result of aberrant O-glycosylation. The most studied form of Tn antigen is found in mucins, in particular, in mucin 1 (MUC1). Antibodies against this form of Tn antigen are used to diagnose tumors, as well as to generate T-killers with a chimeric receptor. Some carcinomas do not carry MUC1 and antibodies of a different specificity are required to detect Tn antigen on these cells. In our work, we searched for anti-Tn antibodies without preliminary assumptions about the proteins that may be carriers of the Tn antigen. For this purpose, we obtained several pairs of isogenic cell lines with the wild type and knockout of the Cosmc gene, which is essential for correct protein O-glycosylation. Using the created lines as immunogens, we generated a monoclonal antibody AKC3, which reacted with the Cosmc-deficient A549 lung adenocarcinoma cells and did not bind to the wild-type cells. Using mass spectrometry, as well as co-immunoprecipitation, it was shown that the AKC3 antibody recognized the Tn antigen in the context of CD44 protein – a protein important for tumor growth. The AKC3 antibody can be used for tumor diagnosis, and to generate T cells with a chimeric receptor for treatment of tumors that do not express mucins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

GalNAc:

N-acetyl-D-galactosamine

LRG1:

leucine rich alpha-2-glycoprotein 1; MUC1, mucin 1

MW:

molecular weight

PAGE:

polyacrylamide gel electrophoresis

PBS:

phosphate-buffered saline

SDS:

sodium dodecyl sulfate

WB:

Western blotting

References

  1. Ju, T., Otto, V. I., and Cummings, R. D. (2011) The Tn antigen-structural simplicity and biological complexity, Angew. Chem. Int. Ed., 50, 1770-1791, doi: https://doi.org/10.1002/anie.201002313 .

    Article  CAS  Google Scholar 

  2. Ju, T., Lanneau, G. S., Gautam, T., Wang, Y., Xia, B., Stowell, S. R., Willard, M. T., Wang, W., Xia, J. Y., Zuna, R. E., Laszik, Z., Benbrook, D. M., Hanigan, M. H., and Cummings, R. D. (2008) Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc, Cancer Res., 68, 1636-1646, doi: https://doi.org/10.1158/0008-5472.CAN-07-2345 .

    Article  CAS  Google Scholar 

  3. Springer, G. F. (1997) Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy, J. Mol. Med., 75, 594-602, doi: https://doi.org/10.1007/s001090050144 .

    Article  CAS  PubMed  Google Scholar 

  4. Schietinger, A., Philip, M., Yoshida, B. A., Azadi, P., Liu, H., Meredith, S. C., and Schreiber, H. (2006) A mutant chaperone converts a wild-type protein into a tumor-specific antigen, Science, 314, 304-308, doi: https://doi.org/10.1126/science.1129200 .

    Article  CAS  PubMed  Google Scholar 

  5. Tarp, M. A., and Clausen, H. (2008) Mucin-type O-glycosylation and its potential use in drug and vaccine development, Biochim. Biophys. Acta, 1780, 546-563, doi: https://doi.org/10.1016/j.bbagen.2007.09.010 .

    Article  CAS  PubMed  Google Scholar 

  6. Persson, N., Stuhr-Hansen, N., Risinger, C., Mereiter, S., Polónia, A., Polom, K., Kovács, A., Roviello, F., Reis, C. A., Welinder, C., Danielsson, L., Jansson, B., and Blixt, O. (2017) Epitope mapping of a new anti-Tn antibody detecting gastric cancer cells, Glycobiology, 27, 635-645, doi: https://doi.org/10.1093/glycob/cwx033 .

    Article  CAS  PubMed  Google Scholar 

  7. Blixt, O., Lavrova, O. I., Mazurov, D. V., Clo, E., Kracun, S. K., Bovin, N. V., and Filatov, A. V. (2012) Analysis of Tn antigenicity with a panel of new IgM and IgG1 monoclonal antibodies raised against leukemic cells, Glycobiology, 22, 529-542, doi: https://doi.org/10.1093/glycob/cwr178 .

    Article  CAS  PubMed  Google Scholar 

  8. Mazurov, D., Ilinskaya, A., Heidecker, G., and Filatov, A. (2012) Role of O-glycosylation and expression of CD43 and CD45 on the surfaces of effector T cells in human T cell leukemia virus type 1 cell-to-cell infection, J. Virol., 86, 2447-2458, doi: https://doi.org/10.1128/JVI.06993-11 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., Cradick, T. J., Marraffini, L. A., Bao, G., and Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31, 827-832, doi: https://doi.org/10.1038/nbt.2647 .

    Article  CAS  PubMed  Google Scholar 

  10. Stolfa, G., Mondal, N., Zhu, Y., Yu, X., Buffone, A., and Neelamegham, S. (2016) Using CRISPR-Cas9 to quantify the contributions of O-glycans, N-glycans and Glycosphingolipids to human leukocyte-endothelium adhesion, Sci. Rep., 6, 30392, doi: https://doi.org/10.1038/srep30392 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tarasevich, A., Filatov, A., Pichugin, A., and Mazurov, D. (2015) Monoclonal antibody profiling of cell surface proteins associated with the viral biofilms on HTLV-1 transformed cells, Acta Virol., 59, 247-256, doi: https://doi.org/10.4149/av_2015_03_247 .

    Article  CAS  PubMed  Google Scholar 

  12. Dobrochaeva, K., Khasbiullina, N., Shilova, N., Antipova, N., Obukhova, P., Ovchinnikova, T., Galanina, O., Blixt, O., Kunz, H., Filatov, A., Knirel, Y., LePendu, J., Khaidukov, S., and Bovin, N. (2020) Specificity of human natural antibodies referred to as anti-Tn, Mol. Immunol., 120, 74-82, doi: https://doi.org/10.1016/j.molimm.2020.02.005 .

    Article  CAS  PubMed  Google Scholar 

  13. Filatov, A. V., Krotov, G. I., Zgoda, V. G., and Volkov, Y. (2007) Fluorescent immunoprecipitation analysis of cell surface proteins: a methodology compatible with mass-spectrometry, J. Immunol. Methods, 319, 21-33, doi: https://doi.org/10.1016/j.jim.2006.09.014 .

    Article  CAS  PubMed  Google Scholar 

  14. Azevedo, R., Gaiteiro, C., Peixoto, A., Relvas-Santos, M., Lima, L., Santos, L. L., and Ferreira, J. A. (2018) CD44 glycoprotein in cancer: a molecular conundrum hampering clinical applications, Clin. Proteomics, 15, 22, doi: https://doi.org/10.1186/s12014-018-9198-9 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gasbarri, A., Del Prete, F., Girnita, L., Martegani, M. P., Natali, P. G., and Bartolazzi, A. (2003) CD44s adhesive function spontaneous and PMA-inducible CD44 cleavage are regulated at post-translational level in cells of melanocytic lineage, Melanoma Res., 13, 325-337, doi: https://doi.org/10.1097/00008390-200308000-00001 .

    Article  CAS  PubMed  Google Scholar 

  16. Ponta, H., Sherman, L., and Herrlich, P. A. (2003) CD44: from adhesion molecules to signalling regulators, Nat. Rev. Mol. Cell Biol., 4, 33-45, doi: https://doi.org/10.1038/nrm1004 .

    Article  CAS  PubMed  Google Scholar 

  17. Naor, D., Sionov, R. V., and Ish-Shalom, D. (1997) CD44: structure, function and association with the malignant process, Adv. Cancer Res., 71, 241-319, doi: https://doi.org/10.1016/S0065-230X(08)60101-3 .

    Article  CAS  PubMed  Google Scholar 

  18. Hu, B., Ma, Y., Yang, Y., Zhang, L., Han, H., and Chen, J. (2018) CD44 promotes cell proliferation in non-small cell lung cancer, Oncol. Lett., 15, 5627-5633 doi: https://doi.org/10.3892/ol.2018.8051 .

    PubMed  PubMed Central  Google Scholar 

  19. Du, T., Jia, X., Dong, X., Ru, X., Li, L., Wang, Y., Liu, J., Feng, G., and Wen, T. (2020) Cosmc disruption-mediated aberrant O-glycosylation suppresses breast cancer cell growth via impairment of CD44, Cancer Manag. Res., 12, 511-522, doi: https://doi.org/10.2147/CMAR.S234735 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Donnell, L. C., Druhan, L. J., and Avalos, B. R. (2002) Molecular characterization and expression analysis of leucine-rich alpha2-glycoprotein, a novel marker of granulocytic differentiation, J. Leukoc. Biol., 72, 478-485.

    PubMed  Google Scholar 

  21. Fang, X. J., Jiang, H., Zhu, Y. Q., Zhang, L. Y., Fan, Q. H., and Tian, Y. (2014) Doxorubicin induces drug resistance and expression of the novel CD44st via NF-κB in human breast cancer MCF-7 cells, Oncol. Rep., 31, 2735-2742, doi: https://doi.org/10.3892/or.2014.3131 .

    Article  CAS  PubMed  Google Scholar 

  22. Campos, D., Freitas, D., Gomes, J., Magalhães, A., Steentoft, C., Gomes, C., Vester-Christensen, M. B., Ferreira, J. A., Afonso, L. P., Santos, L. L., Pinto de Sousa, J., Mandel, U., Clausen, H., Vakhrushev, S. Y., and Reis, C. A. (2015) Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery, Mol. Cell. Proteomics, 14, 1616-1629, doi: https://doi.org/10.1074/mcp.M114.046862 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Steentoft, C., Fuhrmann, M., Battisti, F., Van Coillie, J., Madsen, T. D., Campos, D., Adnan Halim, A., Vakhrushev, S. Y., Joshi, H. J., Schreiber, H., Mandel, U., and Narimatsu, Y. (2019) A strategy for generating cancer-specific monoclonal antibodies to aberrant O-glycoproteins: identification of a novel dysadherin-Tn antibody, Glycobiology, 29, 307-319, doi: https://doi.org/10.1093/glycob/cwz004 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Welinder, C., Baldetorp, B., Borrebaeck, C., Fredlund, B.-M., and Jansson, B. (2011) A new murine IgG1 anti-Tn monoclonal antibody with in vivo anti-tumor activity, Glycobiology, 21, 1097-1107, doi: https://doi.org/10.1093/glycob/cwr048 .

    Article  CAS  PubMed  Google Scholar 

  25. Posey, A. D., Schwab, R. D., Boesteanu, A. C., Steentoft, C., Mandel, U., Engels, B., Stone, J. D., Madsen, T. D., Schreiber, K., Haines, K. M., Cogdill, A. P., Chen, T. J., Song, D., Scholler, J., Kranz, D. M., Feldman, M. D., Young, R., Keith, B., Schreiber, H., Clausen, H., Johnson, L. A., and June, C. H. (2016) Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma, Immunity, 44, 1444-1454, doi: https://doi.org/10.1016/j.immuni.2016.05.014 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gorchakov, A. A., Kulemzin, S. V., Kochneva, G. V., and Taranin, A. V. (2020) Challenges and prospects of chimeric antigen receptor T-cell therapy for metastatic prostate cancer, Eur. Urol., 77, 299-308, doi: https://doi.org/10.1016/j.eururo.2019.08.014 .

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-29-07025 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filatov.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvalova, M.L., Kopylov, A.T., Mazurov, D.V. et al. CD44-Associated Tn Antigen as a New Biomarker of Tumor Cells with Aberrant Glycosylation. Biochemistry Moscow 85, 1064–1071 (2020). https://doi.org/10.1134/S0006297920090060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920090060

Keywords

Navigation