Boldyrev, A. A., Kyaivyaryainen, E. I., and Ilyukha, V. A. (2017) Biomembranologiya: Uchebnoe Posobie (Biological Membranes: Manual) INFRA-M, Moscow.
Garreta, A., Val-Moraes, S. P., García-Fernández, Q., Busquets, M., Juan, C., Oliver, A., Ortiz, A., Gaffney, B. J., Fita, I., Manresa, A., and Carpena, X. (2013) Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa, FASEB J., 27, 4811-4821, doi:
https://doi.org/10.1096/fj.13-235952
.
CAS
Article
Google Scholar
Brash, A. R. (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate, J. Biol. Chem., 274, 23679-23682, doi:
https://doi.org/10.1074/jbc.274.34.23679
.
CAS
Article
Google Scholar
Mashima, R., and Okuyama, T. (2015) The role of lipoxygenases in pathophysiology; new insights and future perspectives, Redox Biol., 6, 297-310, doi:
https://doi.org/10.1016/j.redox.2015.08.006
.
CAS
Article
Google Scholar
Yokomizo, T. (2014) Two distinct leukotriene B4 receptors, BLT1 and BLT2, J. Biochem., 157, 65-71, doi:
https://doi.org/10.1093/jb/mvu078
.
CAS
Article
Google Scholar
Kanaoka, Y., and Boyce, J. A. (2004) Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses, J. Immunol., 173, 1503-1510, doi:
https://doi.org/10.4049/jimmunol.173.3.1503
.
CAS
Article
Google Scholar
Powell, W. S., and Rokach, J. (2015) Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid, Biochim. Biophys. Acta, 1851, 340-355, doi:
https://doi.org/10.1016/j.bbalip.2014.10.008
.
CAS
Article
Google Scholar
Kieran, N. E., Maderna, P., and Godson, C. (2004) Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease, Kidney Int., 65, 1145-1154, doi:
https://doi.org/10.1111/j.1523-1755.2004.00487.x
.
CAS
Article
Google Scholar
Brodhun, F., and Feussner, I. (2011) Oxylipins in fungi, FEBS J., 278, 1047-1063, doi:
https://doi.org/10.1111/j.1742-4658.2011.08027.x
.
CAS
Article
Google Scholar
Heldt, H.-W. (2011) Plant Biochemistry, Academic Press, London.
Wasternack, C. (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development, Ann. Bot., 100, 681-697, doi:
https://doi.org/10.1093/aob/mcm079
.
CAS
Article
Google Scholar
Andreou, A., Brodhun, F., and Feussner, I. (2009) Biosynthesis of oxylipins in non-mammals, Prog. Lipid Res., 48, 148-170, doi:
https://doi.org/10.1016/j.plipres.2009.02.002
.
CAS
Article
Google Scholar
De León, I. P., Hamberg, M., and Castresana, C. (2015) Oxylipins in moss development and defense, Front. Plant. Sci., 6, 483, doi:
https://doi.org/10.3389/fpls.2015.00483
.
Article
Google Scholar
Horn, T., Adel, S., Schumann, R., Sur, S., Kakularam, K. R., Polamarasetty, A., Redanna, P., Kuhn, H., and Heydeck, D. (2015) Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling, Prog. Lipid Res., 57, 13-39, doi:
https://doi.org/10.1016/j.plipres.2014.11.001
.
CAS
Article
Google Scholar
Andreou, A. Z., Vanko, M., Bezakova, L., and Feussner, I. (2008) Properties of a mini 9R-lipoxygenase from Nostoc sp. PCC 7120 and its mutant forms, Phytochemistry, 69, 1832-1837, doi:
https://doi.org/10.1016/j.phytochem.2008.03.002
.
CAS
Article
Google Scholar
Lang, I., Göbel, C., Porzel, A., Heilmann, I., and Feussner, I. (2008) A lipoxygenase with linoleate diol synthase activity from Nostoc sp. PCC 7120, Biochem. J., 410, 347-357, doi:
https://doi.org/10.1042/BJ20071277
.
CAS
Article
Google Scholar
Wang, X., Lu, F., Zhang, C., Lu, Y., Bie, X., Ren, D., and Lu, Z. (2014) Peroxidation radical formation and regiospecificity of recombinated Anabaena sp. lipoxygenase and its effect on modifying wheat proteins, J. Agric. Food. Chem., 62, 1713-1719, doi:
https://doi.org/10.1021/jf405425c
.
CAS
Article
Google Scholar
An, J. U., Hong, S. H., and Oh, D. K. (2018) Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1863, 823-833, doi:
https://doi.org/10.1016/j.bbalip.2018.04.014
.
CAS
Article
Google Scholar
Vance, R. E., Hong, S., Gronert, K., Serhan, C. N., and Mekalanos, J. J. (2004) The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase, Proc. Natl. Acad. Sci. USA, 101, 2135-2139, doi:
https://doi.org/10.1073/pnas.0307308101
.
CAS
Article
Google Scholar
Banthiya, S., Kalms, J., Yoga, E. G., Ivanov, I., Carpena, X., Hamberg, M., Kuhn, H., and Scheerer, P. (2016) Structural and functional basis of phospholipid oxygenase activity of bacterial lipoxygenase from Pseudomonas aeruginosa, Biochim. Biophys. Acta, 1861, 1681-1692, doi:
https://doi.org/10.1016/j.bbalip.2016.08.002
.
CAS
Article
Google Scholar
Porta, H., and Rocha-Sosa, M. (2001) Lipoxygenase in bacteria: a horizontal transfer event? Microbiology, 147, 3199-3200, doi:
https://doi.org/10.1099/00221287-147-12-3199
.
CAS
Article
Google Scholar
Koeduka, T., Kajiwara, T., and Matsui, K. (2007) Cloning of lipoxygenase genes from a cyanobacterium, Nostoc punctiforme, and its expression in Eschelichia coli, Curr. Microbiol., 54, 315-319, doi:
https://doi.org/10.1007/s00284-006-0512-9
.
CAS
Article
Google Scholar
Dar, H. H., Tyurina, Y. Y., Mikulska-Ruminska, K., Shrivastava, I., Ting, H. C., et al. (2019) Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium, J. Clin. Invest., 128, 4639-4653, doi:
https://doi.org/10.1172/JCI99490
.
Article
Google Scholar
Goloshchapova, K., Stehling, S., Heydeck, D., Blum, M., and Kuhn, H. (2019) Functional characterization of a novel arachidonic acid 12S-lipoxygenase in the halotolerant bacterium Myxococcus fulvus exhibiting complex social living patterns, MicrobiologyOpen, 8, e00775, doi:
https://doi.org/10.1002/mbo3.775
.
CAS
Article
Google Scholar
Hansen, J., Garreta, A., Benincasa, M., Fusté, M. C., Busquets, M., and Manresa, A. (2013) Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach, Appl. Microbiol. Biotechnol., 97, 4737-4747, doi:
https://doi.org/10.1007/s00253-013-4887-9
.
CAS
Article
Google Scholar
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389-3402, doi:
https://doi.org/10.1093/nar/25.17.3389
.
CAS
Article
Google Scholar
UniProt Consortium (2018) UniProt: the universal protein knowledgebase, Nucleic Acids Res., 46, 2699, doi:
https://doi.org/10.1093/nar/gky092
.
CAS
Article
Google Scholar
Yoshimoto, T., Yamamoto, Y., Arakawa, T., Suzuki, H., Yamamoto, S., Yokoyama, C., Tanabe, T., and Toh, H. (1990) Molecular cloning and expression of human arachidonate 12-lipoxygenase, Biochem. Biophys. Res. Commun., 172, 1230-1235, doi:
https://doi.org/10.1016/0006-291x(90)91580-l
.
CAS
Article
Google Scholar
Hörnsten, L., Su, C., Osbourn, A. E., Hellman, U., and Oliw, E. H. (2002) Cloning of the manganese lipoxygenase gene reveals homology with the lipoxygenase gene family, Eur. J. Biochem., 269, 2690-2697, doi:
https://doi.org/10.1046/j.1432-1033.2002.02936.x
.
CAS
Article
Google Scholar
Vidal-Mas, J., Busquets, M., and Manresa, A. (2005) Cloning and expression of a lipoxygenase from Pseudomonas aeruginosa 42A2, Antonie van Leeuwenhoek, 87, 245-251, doi:
https://doi.org/10.1007/s10482-004-4021-1
.
CAS
Article
Google Scholar
Marchler-Bauer, A., and Bryant, S. H. (2004) CD-Search: protein domain annotations on the fly, Nucleic Acids Res., 32 (suppl. 2), W327-W331, doi:
https://doi.org/10.1093/nar/gkh454
.
CAS
Article
Google Scholar
Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., et al. (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures, Nucleic Acids Res., 45, D200-D203, doi:
https://doi.org/10.1093/nar/gkw1129
.
CAS
Article
Google Scholar
Katoh, K., Rozewicki, J., and Yamada, K. D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, Brief. Bioinform., 20, 1160-1166, doi:
https://doi.org/10.1093/bib/bbx108
.
CAS
Article
Google Scholar
Kuraku, S., Zmasek, C. M., Nishimura, O., and Katoh, K. (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity, Nucleic Acids Res., 41, W22-W28, doi:
https://doi.org/10.1093/nar/gkt389
.
Article
Google Scholar
Katoh, K., Misawa, K., Kuma, K. I., and Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 30, 3059-3066, doi:
https://doi.org/10.1093/nar/gkf436
.
CAS
Article
Google Scholar
Gouveia-Oliveira, R., Sackett, P. W., and Pedersen, A. G. (2007) MaxAlign: maximizing usable data in an alignment, BMC Bioinformatics, 8, 312, doi:
https://doi.org/10.1186/1471-2105-8-312
.
CAS
Article
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 35, 1547-1549, doi:
https://doi.org/10.1093/molbev/msy096
.
CAS
Article
Google Scholar
Letunic, I., and Bork, P. (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res., 44, W242-W245, doi:
https://doi.org/10.1093/nar/gkw290
.
CAS
Article
Google Scholar
Huson, D. H., and Bryant, D. (2006) Application of phylogenetic networks in evolutionary studies, Mol. Biol. Evol., 23, 254-267, doi:
https://doi.org/10.1093/molbev/msj030
.
CAS
Article
Google Scholar
Schirrmeister, B. E., Antonelli, A., and Bagheri, H. C. (2011) The origin of multicellularity in cyanobacteria, BMC Evol. Biol., 11, 45, doi:
https://doi.org/10.1186/1471-2148-11-45
.
Article
Google Scholar
Elhai, J., and Khudyakov, I. (2018) Ancient association of cyanobacterial multicellularity with the regulator HetR and an RGSGR pentapeptide‐containing protein (PatX), Mol. Microbiol., 110, 931-954, doi:
https://doi.org/10.1111/mmi.14003
.
CAS
Article
Google Scholar
Martínez, E., Cosnahan, R. K., Wu, M., Gadila, S. K., Quick, E. B., Mobley, J. A., and Campos-Gómez, J. (2019) Oxylipins mediate cell-to-cell communication in Pseudomonas aeruginosa, Commun. Biol., 2, 1-10, doi:
https://doi.org/10.1038/s42003-019-0310-0
.
Article
Google Scholar
An, J. U., and Oh, D. K. (2018) Stabilization and improved activity of arachidonate 11S-lipoxygenase from proteobacterium Myxococcus xanthus, J. Lipid Res., 59, 2153-2163, doi:
https://doi.org/10.1194/jlr.M088823
.
CAS
Article
Google Scholar
Basu, S., Fey, P., Pandit, Y., Dodson, R., Kibbe, W. A., and Chisholm, R. L. (2012) DictyBase 2013: integrating multiple Dictyostelid species, Nucleic Acids Res., 41, D676-D683, doi:
https://doi.org/10.1093/nar/gks1064
.
CAS
Article
Google Scholar
Levinson, W. (2008) Medical Microbiology and Immunology, 8th Edn., McGraw-Hill/Appleton & Lange, New York.
Boitsov, A. G., and Vasil’ev, O. D. (2013) Klinicheskaya Laboratornaya Diagnostika: Natsional’noe Rukovodstvo (Dolgov, V. V., and Menshikov, V. V., eds.) GEOTAR-Media, Moscow, pp. 380-388.
Kaftyreva, L. A., Boitsov, A. G., and Makarova M. A. (2013) Klinicheskaya Laboratornaya Diagnostika: Natsional’noe Rukovodstvo (Dolgov, V. V., and Menshikov, V. V., eds.) GEOTAR-Media, Moscow, pp. 342-365.
Totolyan, A. A., Burova, L. A., Dmitriev, A. V., and Suvorov, A. N. (2013) Klinicheskaya Laboratornaya Diagnostika: Natsional’noe Rukovodstvo (Dolgov, V. V., and Menshikov, V. V., eds.) GEOTAR-Media, Moscow, pp. 417-435.
Van’t Wout, E. F., van Schadewijk, A., van Boxtel, R., Dalton, L. E., Clarke, H. J., Tommassen, J., Marciniak, S. J., and Hiemstra, P. S. (2015) Virulence factors of Pseudomonas aeruginosa induce both the unfolded protein and integrated stress responses in airway epithelial cells, PLoS Pathog., 11, doi:
https://doi.org/10.1371/journal.ppat.1004946
.
Google Scholar
Stoyanova, M., Pavlina, I., Moncheva, P., and Bogatzevska, N. (2007) Biodiversity and incidence of Burkholderia species, Biotechnology and Biotechnological Equipment, 21, 306-310, doi:
https://doi.org/10.1080/13102818.2007.10817465
.
Article
Google Scholar
Antunes, L., Visca, P., and Towner, K. J. (2014) Acinetobacter baumannii: evolution of a global pathogen, Pathog. Dis., 71, 292-301, doi:
https://doi.org/10.1111/2049-632X.12125
.
CAS
Article
Google Scholar
Davin-Regli, A. (2015) Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment, Front. Microbiol., 6, 392, doi:
https://doi.org/10.3389/fmicb.2015.00392
.
Article
Google Scholar
Lebeaux, D., Lanternier, F., Degand, N., Catherinot, E., Podglajen, I., Rubio, M. T., Suarez, F., Lecuit, M., Mainardi, J.-L., and Lortholary, O. (2010) Nocardia pseudobrasiliensis as an emerging cause of opportunistic infection after allogeneic hematopoietic stem cell transplantation, J. Clin. Microbiol., 48, 656-659, doi:
https://doi.org/10.1128/JCM.01244-09
.
Article
Google Scholar
Baba, H., Nada, T., Ohkusu, K., Ezaki, T., Hasegawa, Y., and Paterson, D. L. (2009) First case of bloodstream infection caused by Rhodococcus erythropolis, J. Clin. Microbiol., 47, 2667-2669, doi:
https://doi.org/10.1128/JCM.00294-09
.
Article
Google Scholar
Hong, S. K., Lee, J. S., and Kim, E. C. (2015) First Korean case of Cedecea lapagei pneumonia in a patient with chronic obstructive pulmonary disease, Ann. Lab. Med., 35, 266-268, doi:
https://doi.org/10.3343/alm.2015.35.2.266
.
Article
Google Scholar
Herrera, V. R. C., De Silva, M. F. R., Alcaraz, H. O., Espiritu, G. C., Peña, K. C., and Melnikov, V. (2018) Death related to Cedecea lapagei in a soft tissue bullae infection: a case report, J. Med. Case Rep., 12, 328, doi:
https://doi.org/10.1186/s13256-018-1866-x
.
Article
Google Scholar
Vandamme, P., Peeters, C., De Smet, B., Price, E. P., Sarovich, D. S., Henry, D. A., Hird, T. J., Zlosnik, J. E. A., Mayo, M., Warner, J., Baker, A., Currie, B. J., and Carlier, A. (2017) Comparative genomics of Burkholderia singularis sp. nov., a low G+C content, free-living bacterium that defies taxonomic dissection of the genus Burkholderia, Front. Microbiol., 8, 1679, doi:
https://doi.org/10.3389/fmicb.2017.01679
.
Article
Google Scholar
De Smet, B., Mayo, M., Peeters, C., Zlosnik, J. E., Spilker, T., Hird, T. J., LiPuma, J. J., Kidd, T. J., Kaestli, M., Ginther, J. L., Wagner, D. M., Keim, P., Bell, S. C., Jacobs, J. A., Currie, B. J., and Vandamme, P. (2015) Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources, Int. J. Syst. Evol. Microbiol., 65, 2265-2271, doi:
https://doi.org/10.1099/ijs.0.000251
.
CAS
Article
Google Scholar
Segonds, C., Clavel-Batut, P., Thouverez, M., Grenet, D., Le Coustumier, A., Plésiat, P., and Chabanon, G. (2009) Microbiological and epidemiological features of clinical respiratory isolates of Burkholderia gladioli, J. Clin. Microbiol., 47, 1510-1516, doi:
https://doi.org/10.1128/JCM.02489-08
.
Article
Google Scholar
Quon, B. S., Reid, J. D., Wong, P., Wilcox, P. G., Javer, A., Wilson, J. M., and Levy, R. D. (2011) Burkholderia gladioli – a sessorictor of poor outcome in cystic fibrosis patients who receive lung transplants? A case of locally invasive rhinosinusitis and persistent bacteremia in a 36-year-old lung transplant recipient with cystic fibrosis, Can. Respir. J., 18, e64-e65, doi:
https://doi.org/10.1155/2011/304179
.
Article
Google Scholar
Imataki, O., Kita, N., Nakayama-Imaohji, H., Kida, J. I., Kuwahara, T., and Uemura, M. (2014) Bronchiolitis and bacteraemia caused by Burkholderia gladioli in a non-lung transplantation patient, New Microbes New Infect., 2, 175, doi:
https://doi.org/10.1002/nmi2.64
.
CAS
Article
Google Scholar
Haraga, A., West, T. E., Brittnacher, M. J., Skerrett, S. J., and Miller, S. I. (2008) Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei, Infect. Immun., 76, 5402-5411, doi:
https://doi.org/10.1128/IAI.00626-08
.
CAS
Article
Google Scholar
Thatcher, L. F., Myers, C. A., O’Sullivan, C. A., and Roper, M. M. (2017) Draft genome sequence of Rhodococcus sp. strain 66b, Genome Announc., 5, e00229-17, doi:
https://doi.org/10.1128/genomeA.00229-17
.
Article
Google Scholar
Han, J. I., Spain, J. C., Leadbetter, J. R., Ovchinnikova, G., Goodwin, L. A., Han, C. S., Woyke, T., Davenport, K. W., and Orwin, P. M. (2013) Genome of the root-associated plant growth-promoting bacterium Variovorax paradoxus strain EPS, Genome Announc., 1, e00843-13, doi:
https://doi.org/10.1128/genomeA.00843-13
.
Article
Google Scholar
Han, J. I., Choi, H. K., Lee, S. W., Orwin, P. M., Kim, J., LaRoe, S. L., Kim, T.-G., O’Neil, J., Leadbetter, J. R., Lee, S. Y., Hur, C.-G., Spain, J. C., Ovchinnikova, G., Goodwin, L., and Han, C. (2011) Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110, J. Bacteriol., 193, 1183-1190, doi:
https://doi.org/10.1128/JB.00925-10
.
CAS
Article
Google Scholar
Chung, E. J., Park, J. A., Jeon, C. O., and Chung, Y. R. (2015) Gynuella sunshinyii gen. nov., sp. nov., an antifungal rhizobacterium isolated from a halophyte, Carex scabrifolia Steud, Int. J. Syst. Evol. Microbiol., 65, 1038-1043, doi:
https://doi.org/10.1099/ijs.0.000060
.
CAS
Article
Google Scholar
Gibb, A. P., Martin, K. M., Davidson, G. A., Walker, B., and Murphy, W. G. (1995) Rate of growth of Pseudomonas fluorescens in donated blood, J. Clin. Pathol., 48, 717-718, doi:
https://doi.org/10.1136/jcp.48.8.717
.
CAS
Article
Google Scholar
Gershman, M. D., Kennedy, D. J., Noble-Wang, J., Kim, C., Gullion, J., Kacica, M., Jensen, B., Pascoe, N., Saiman, L., McHale, J., Wilkins, M., Schoonmaker-Bopp, D., Clayton, J., Arduino, M., Srinivasan, A., and Pseudomonas fluorescens Investigation Team (2008) Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy, Clin. Infect. Dis., 47, 1372-1379, doi:
https://doi.org/10.1086/592968
.
Article
Google Scholar
Walker, T. S., Bais, H. P., Déziel, E., Schweizer, H. P., Rahme, L. G., Fall, R., and Vivanco, J. M. (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation, Plant Physiol., 134, 320-331, doi:
https://doi.org/10.1104/pp.103.027888
.
CAS
Article
Google Scholar
Rahme, L. G., Ausubel, F. M., Cao, H., Drenkard, E., Goumnerov, B. C., Lau, G. W., Mahajan-Miklos, S., Plotnikova, J., Tan, M. W., Tsongalis, J., Walendziewicz, C. L., and Tompkins, R. G. (2000) Plants and animals share functionally common bacterial virulence factors, Proc. Natl. Acad. Sci. USA, 97, 8815-8821, doi:
https://doi.org/10.1073/pnas.97.16.8815
.
CAS
Article
Google Scholar
Van Baarlen, P., Van Belkum, A., Summerbell, R. C., Crous, P. W., and Thomma, B. P. (2007) Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps?, FEMS Microbiol. Rev., 31, 239-277, doi:
https://doi.org/10.1111/j.1574-6976.2007.00065.x
.
CAS
Article
Google Scholar
Relman, D. A., and Falkow, S. (2015) A molecular perspective of microbial pathogenicity, in Principles and Practice of Infectious Diseases, Eighth Edition (Bennett, J. E., Dolin, R., and Blaser, M. J., eds.) Elsevier Saunders, Philadelphia, pp. 1-10.
Singh, A., Vaidya, B., Khatri, I., Srinivas, T. N. R., Subramanian, S., Korpole, S., and Pinnaka, A. K. (2014) Grimontia indica AK16T, sp. nov., isolated from a seawater sample reports the presence of pathogenic genes similar to Vibrio genus, PLoS One, 9, e85590, doi:
https://doi.org/10.1371/journal.pone.0085590
.
CAS
Article
Google Scholar
Nakai, R., Fujisawa, T., Nakamura, Y., Baba, T., Nishijima, M., Karray, F., Sami Sayadi, S., Isoda, N., Naganuma, T., and Niki, H. (2016) Genome sequence and overview of Oligoflexus tunisiensis Shr3 T in the eighth class Oligoflexia of the phylum Proteobacteria, Stand. Genomic. Sci., 11, 90, doi:
https://doi.org/10.1186/s40793-016-0210-6
.
CAS
Article
Google Scholar
Nishijima, M., Adachi, K., Katsuta, A., Shizuri, Y., and Yamasato, K. (2013) Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007, Int. J. Syst. Evol. Microbiol., 63, 709-714, doi:
https://doi.org/10.1099/ijs.0.042077-0
.
CAS
Article
Google Scholar
Schmidt, E. W., Obraztsova, A. Y., Davidson, S. K., Faulkner, D. J., and Haygood, M. G. (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium,“Candidatus Entotheonella palauensis”, Marine Biol., 136, 969-977, doi:
https://doi.org/10.1007/s002270000273
.
CAS
Article
Google Scholar
McCauley, E. P., Haltli, B., and Kerr, R. G. (2015) Description of Pseudobacteriovorax antillogorgiicola gen. nov., sp. nov., a bacterium isolated from the gorgonian octocoral Antillogorgia elisabethae, belonging to the family Pseudobacteriovoracaceae fam. nov., within the order Bdellovibrionales, Int. J. Syst. Evol. Microbiol., 65, 522-530, doi:
https://doi.org/10.1099/ijs.0.066266-0
.
CAS
Article
Google Scholar
Thompson, F. L., Thompson, C. C., Naser, S., Hoste, B., Vandemeulebroecke, K., Munn, C., Bourne, D., and Swings, J. (2005) Photobacterium rosenbergii sp. nov. and Enterovibrio coralii sp. nov., vibrios associated with coral bleaching, Int. J. Syst. Evol. Microbiol., 55, 913-917, doi:
https://doi.org/10.1099/ijs.0.63370-0
.
CAS
Article
Google Scholar
Pascual, J., Macian, M. C., Arahal, D. R., Garay, E., and Pujalte, M. J. (2009) Description of Enterovibrio nigricans sp. nov., reclassification of Vibrio calviensis as Enterovibrio calviensis comb. nov. and emended description of the genus Enterovibrio Thompson et al. 2002, Int. J. Syst. Evol. Microbiol., 59, 698-704, doi:
https://doi.org/10.1099/ijs.0.001990-0
.
CAS
Article
Google Scholar
Thompson, F. L., Hoste, B., Thompson, C. C., Goris, J., Gomez-Gil, B., Huys, L., De Los, P., and Swings, J. (2002) Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae, Int. J. Syst. Evol. Microbiol., 52, 2015-2022, doi:
https://doi.org/10.1099/00207713-52-6-2015
.
CAS
Article
Google Scholar
URL: https://thefishsite.com/articles/nocardia-seriolae-a-chronic-problem.
Hurst, S., Rowedder, H., Michaels, B., Bullock, H., Jackobeck, R., Abebe-Akele, F., Durakovic, U., Gately, J., Janicki, E., and Tisa, L. S. (2015) Elucidation of the Photorhabdus temperata genome and generation of a transposon mutant library to identify motility mutants altered in pathogenesis, J. Bacteriol., 197, 2201-2216, doi:
https://doi.org/10.1128/JB.00197-15
.
CAS
Article
Google Scholar