Skip to main content

Bacterial and Protozoan Lipoxygenases Could be Involved in Cell-to-Cell Signaling and Immune Response Suppression

An Erratum to this article was published on 27 October 2020

This article has been updated

Abstract

Lipoxygenases are found in animals, plants, and fungi, where they are involved in a wide range of cell-to-cell signaling processes. The presence of lipoxygenases in a number of bacteria and protozoa has been also established, but their biological significance remains poorly understood. Several hypothetical functions of lipoxygenases in bacteria and protozoa have been suggested without experimental validation. The objective of our study was evaluating the functions of bacterial and protozoan lipoxygenases by evolutionary and taxonomic analysis using bioinformatics tools. Lipoxygenase sequences were identified and examined using BLAST, followed by analysis of constructed phylogenetic trees and networks. Our results support the theory on the involvement of lipoxygenases in the formation of multicellular structures by microorganisms and their possible evolutionary significance in the emergence of multicellularity. Furthermore, we observed association of lipoxygenases with the suppression of host immune response by parasitic and symbiotic bacteria including dangerous opportunistic pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.
Lipoxygenase occurrence in parasitic and symbiotic bacteria
Fig. 7.
Fig. 8.

Change history

  • 27 October 2020

    On p. 1051, Fig. 2, legend: instead of “nor” should read “not”.

    On p. 1053, Fig. 4, legend: instead of “initial” should read “original”.

    On p. 1059, Fig. 7, legend: instead of “initial” should read “original”.

References

  1. Boldyrev, A. A., Kyaivyaryainen, E. I., and Ilyukha, V. A. (2017) Biomembranologiya: Uchebnoe Posobie (Biological Membranes: Manual) INFRA-M, Moscow.

  2. Garreta, A., Val-Moraes, S. P., García-Fernández, Q., Busquets, M., Juan, C., Oliver, A., Ortiz, A., Gaffney, B. J., Fita, I., Manresa, A., and Carpena, X. (2013) Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa, FASEB J., 27, 4811-4821, doi: https://doi.org/10.1096/fj.13-235952 .

    CAS  Article  Google Scholar 

  3. Brash, A. R. (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate, J. Biol. Chem., 274, 23679-23682, doi: https://doi.org/10.1074/jbc.274.34.23679 .

    CAS  Article  Google Scholar 

  4. Mashima, R., and Okuyama, T. (2015) The role of lipoxygenases in pathophysiology; new insights and future perspectives, Redox Biol., 6, 297-310, doi: https://doi.org/10.1016/j.redox.2015.08.006 .

    CAS  Article  Google Scholar 

  5. Yokomizo, T. (2014) Two distinct leukotriene B4 receptors, BLT1 and BLT2, J. Biochem., 157, 65-71, doi: https://doi.org/10.1093/jb/mvu078 .

    CAS  Article  Google Scholar 

  6. Kanaoka, Y., and Boyce, J. A. (2004) Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses, J. Immunol., 173, 1503-1510, doi: https://doi.org/10.4049/jimmunol.173.3.1503 .

    CAS  Article  Google Scholar 

  7. Powell, W. S., and Rokach, J. (2015) Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid, Biochim. Biophys. Acta, 1851, 340-355, doi: https://doi.org/10.1016/j.bbalip.2014.10.008 .

    CAS  Article  Google Scholar 

  8. Kieran, N. E., Maderna, P., and Godson, C. (2004) Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease, Kidney Int., 65, 1145-1154, doi: https://doi.org/10.1111/j.1523-1755.2004.00487.x .

    CAS  Article  Google Scholar 

  9. Brodhun, F., and Feussner, I. (2011) Oxylipins in fungi, FEBS J., 278, 1047-1063, doi: https://doi.org/10.1111/j.1742-4658.2011.08027.x .

    CAS  Article  Google Scholar 

  10. Heldt, H.-W. (2011) Plant Biochemistry, Academic Press, London.

  11. Wasternack, C. (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development, Ann. Bot., 100, 681-697, doi: https://doi.org/10.1093/aob/mcm079 .

    CAS  Article  Google Scholar 

  12. Andreou, A., Brodhun, F., and Feussner, I. (2009) Biosynthesis of oxylipins in non-mammals, Prog. Lipid Res., 48, 148-170, doi: https://doi.org/10.1016/j.plipres.2009.02.002 .

    CAS  Article  Google Scholar 

  13. De León, I. P., Hamberg, M., and Castresana, C. (2015) Oxylipins in moss development and defense, Front. Plant. Sci., 6, 483, doi: https://doi.org/10.3389/fpls.2015.00483 .

    Article  Google Scholar 

  14. Horn, T., Adel, S., Schumann, R., Sur, S., Kakularam, K. R., Polamarasetty, A., Redanna, P., Kuhn, H., and Heydeck, D. (2015) Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling, Prog. Lipid Res., 57, 13-39, doi: https://doi.org/10.1016/j.plipres.2014.11.001 .

    CAS  Article  Google Scholar 

  15. Andreou, A. Z., Vanko, M., Bezakova, L., and Feussner, I. (2008) Properties of a mini 9R-lipoxygenase from Nostoc sp. PCC 7120 and its mutant forms, Phytochemistry, 69, 1832-1837, doi: https://doi.org/10.1016/j.phytochem.2008.03.002 .

    CAS  Article  Google Scholar 

  16. Lang, I., Göbel, C., Porzel, A., Heilmann, I., and Feussner, I. (2008) A lipoxygenase with linoleate diol synthase activity from Nostoc sp. PCC 7120, Biochem. J., 410, 347-357, doi: https://doi.org/10.1042/BJ20071277 .

    CAS  Article  Google Scholar 

  17. Wang, X., Lu, F., Zhang, C., Lu, Y., Bie, X., Ren, D., and Lu, Z. (2014) Peroxidation radical formation and regiospecificity of recombinated Anabaena sp. lipoxygenase and its effect on modifying wheat proteins, J. Agric. Food. Chem., 62, 1713-1719, doi: https://doi.org/10.1021/jf405425c .

    CAS  Article  Google Scholar 

  18. An, J. U., Hong, S. H., and Oh, D. K. (2018) Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1863, 823-833, doi: https://doi.org/10.1016/j.bbalip.2018.04.014 .

    CAS  Article  Google Scholar 

  19. Vance, R. E., Hong, S., Gronert, K., Serhan, C. N., and Mekalanos, J. J. (2004) The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase, Proc. Natl. Acad. Sci. USA, 101, 2135-2139, doi: https://doi.org/10.1073/pnas.0307308101 .

    CAS  Article  Google Scholar 

  20. Banthiya, S., Kalms, J., Yoga, E. G., Ivanov, I., Carpena, X., Hamberg, M., Kuhn, H., and Scheerer, P. (2016) Structural and functional basis of phospholipid oxygenase activity of bacterial lipoxygenase from Pseudomonas aeruginosa, Biochim. Biophys. Acta, 1861, 1681-1692, doi: https://doi.org/10.1016/j.bbalip.2016.08.002 .

    CAS  Article  Google Scholar 

  21. Porta, H., and Rocha-Sosa, M. (2001) Lipoxygenase in bacteria: a horizontal transfer event? Microbiology, 147, 3199-3200, doi: https://doi.org/10.1099/00221287-147-12-3199 .

    CAS  Article  Google Scholar 

  22. Koeduka, T., Kajiwara, T., and Matsui, K. (2007) Cloning of lipoxygenase genes from a cyanobacterium, Nostoc punctiforme, and its expression in Eschelichia coli, Curr. Microbiol., 54, 315-319, doi: https://doi.org/10.1007/s00284-006-0512-9 .

    CAS  Article  Google Scholar 

  23. Dar, H. H., Tyurina, Y. Y., Mikulska-Ruminska, K., Shrivastava, I., Ting, H. C., et al. (2019) Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium, J. Clin. Invest., 128, 4639-4653, doi: https://doi.org/10.1172/JCI99490 .

    Article  Google Scholar 

  24. Goloshchapova, K., Stehling, S., Heydeck, D., Blum, M., and Kuhn, H. (2019) Functional characterization of a novel arachidonic acid 12S-lipoxygenase in the halotolerant bacterium Myxococcus fulvus exhibiting complex social living patterns, MicrobiologyOpen, 8, e00775, doi: https://doi.org/10.1002/mbo3.775 .

    CAS  Article  Google Scholar 

  25. Hansen, J., Garreta, A., Benincasa, M., Fusté, M. C., Busquets, M., and Manresa, A. (2013) Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach, Appl. Microbiol. Biotechnol., 97, 4737-4747, doi: https://doi.org/10.1007/s00253-013-4887-9 .

    CAS  Article  Google Scholar 

  26. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389-3402, doi: https://doi.org/10.1093/nar/25.17.3389 .

    CAS  Article  Google Scholar 

  27. UniProt Consortium (2018) UniProt: the universal protein knowledgebase, Nucleic Acids Res., 46, 2699, doi: https://doi.org/10.1093/nar/gky092 .

    CAS  Article  Google Scholar 

  28. Yoshimoto, T., Yamamoto, Y., Arakawa, T., Suzuki, H., Yamamoto, S., Yokoyama, C., Tanabe, T., and Toh, H. (1990) Molecular cloning and expression of human arachidonate 12-lipoxygenase, Biochem. Biophys. Res. Commun., 172, 1230-1235, doi: https://doi.org/10.1016/0006-291x(90)91580-l .

    CAS  Article  Google Scholar 

  29. Hörnsten, L., Su, C., Osbourn, A. E., Hellman, U., and Oliw, E. H. (2002) Cloning of the manganese lipoxygenase gene reveals homology with the lipoxygenase gene family, Eur. J. Biochem., 269, 2690-2697, doi: https://doi.org/10.1046/j.1432-1033.2002.02936.x .

    CAS  Article  Google Scholar 

  30. Vidal-Mas, J., Busquets, M., and Manresa, A. (2005) Cloning and expression of a lipoxygenase from Pseudomonas aeruginosa 42A2, Antonie van Leeuwenhoek, 87, 245-251, doi: https://doi.org/10.1007/s10482-004-4021-1 .

    CAS  Article  Google Scholar 

  31. Marchler-Bauer, A., and Bryant, S. H. (2004) CD-Search: protein domain annotations on the fly, Nucleic Acids Res., 32 (suppl. 2), W327-W331, doi: https://doi.org/10.1093/nar/gkh454 .

    CAS  Article  Google Scholar 

  32. Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., et al. (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures, Nucleic Acids Res., 45, D200-D203, doi: https://doi.org/10.1093/nar/gkw1129 .

    CAS  Article  Google Scholar 

  33. Katoh, K., Rozewicki, J., and Yamada, K. D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, Brief. Bioinform., 20, 1160-1166, doi: https://doi.org/10.1093/bib/bbx108 .

    CAS  Article  Google Scholar 

  34. Kuraku, S., Zmasek, C. M., Nishimura, O., and Katoh, K. (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity, Nucleic Acids Res., 41, W22-W28, doi: https://doi.org/10.1093/nar/gkt389 .

    Article  Google Scholar 

  35. Katoh, K., Misawa, K., Kuma, K. I., and Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 30, 3059-3066, doi: https://doi.org/10.1093/nar/gkf436 .

    CAS  Article  Google Scholar 

  36. Gouveia-Oliveira, R., Sackett, P. W., and Pedersen, A. G. (2007) MaxAlign: maximizing usable data in an alignment, BMC Bioinformatics, 8, 312, doi: https://doi.org/10.1186/1471-2105-8-312 .

    CAS  Article  Google Scholar 

  37. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 35, 1547-1549, doi: https://doi.org/10.1093/molbev/msy096 .

    CAS  Article  Google Scholar 

  38. Letunic, I., and Bork, P. (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res., 44, W242-W245, doi: https://doi.org/10.1093/nar/gkw290 .

    CAS  Article  Google Scholar 

  39. Huson, D. H., and Bryant, D. (2006) Application of phylogenetic networks in evolutionary studies, Mol. Biol. Evol., 23, 254-267, doi: https://doi.org/10.1093/molbev/msj030 .

    CAS  Article  Google Scholar 

  40. Schirrmeister, B. E., Antonelli, A., and Bagheri, H. C. (2011) The origin of multicellularity in cyanobacteria, BMC Evol. Biol., 11, 45, doi: https://doi.org/10.1186/1471-2148-11-45 .

    Article  Google Scholar 

  41. Elhai, J., and Khudyakov, I. (2018) Ancient association of cyanobacterial multicellularity with the regulator HetR and an RGSGR pentapeptide‐containing protein (PatX), Mol. Microbiol., 110, 931-954, doi: https://doi.org/10.1111/mmi.14003 .

    CAS  Article  Google Scholar 

  42. Martínez, E., Cosnahan, R. K., Wu, M., Gadila, S. K., Quick, E. B., Mobley, J. A., and Campos-Gómez, J. (2019) Oxylipins mediate cell-to-cell communication in Pseudomonas aeruginosa, Commun. Biol., 2, 1-10, doi: https://doi.org/10.1038/s42003-019-0310-0 .

    Article  Google Scholar 

  43. An, J. U., and Oh, D. K. (2018) Stabilization and improved activity of arachidonate 11S-lipoxygenase from proteobacterium Myxococcus xanthus, J. Lipid Res., 59, 2153-2163, doi: https://doi.org/10.1194/jlr.M088823 .

    CAS  Article  Google Scholar 

  44. Basu, S., Fey, P., Pandit, Y., Dodson, R., Kibbe, W. A., and Chisholm, R. L. (2012) DictyBase 2013: integrating multiple Dictyostelid species, Nucleic Acids Res., 41, D676-D683, doi: https://doi.org/10.1093/nar/gks1064 .

    CAS  Article  Google Scholar 

  45. Levinson, W. (2008) Medical Microbiology and Immunology, 8th Edn., McGraw-Hill/Appleton & Lange, New York.

  46. Boitsov, A. G., and Vasil’ev, O. D. (2013) Klinicheskaya Laboratornaya Diagnostika: Natsional’noe Rukovodstvo (Dolgov, V. V., and Menshikov, V. V., eds.) GEOTAR-Media, Moscow, pp. 380-388.

  47. Kaftyreva, L. A., Boitsov, A. G., and Makarova M. A. (2013) Klinicheskaya Laboratornaya Diagnostika: Natsional’noe Rukovodstvo (Dolgov, V. V., and Menshikov, V. V., eds.) GEOTAR-Media, Moscow, pp. 342-365.

  48. Totolyan, A. A., Burova, L. A., Dmitriev, A. V., and Suvorov, A. N. (2013) Klinicheskaya Laboratornaya Diagnostika: Natsional’noe Rukovodstvo (Dolgov, V. V., and Menshikov, V. V., eds.) GEOTAR-Media, Moscow, pp. 417-435.

  49. Van’t Wout, E. F., van Schadewijk, A., van Boxtel, R., Dalton, L. E., Clarke, H. J., Tommassen, J., Marciniak, S. J., and Hiemstra, P. S. (2015) Virulence factors of Pseudomonas aeruginosa induce both the unfolded protein and integrated stress responses in airway epithelial cells, PLoS Pathog., 11, doi: https://doi.org/10.1371/journal.ppat.1004946 .

    Google Scholar 

  50. Stoyanova, M., Pavlina, I., Moncheva, P., and Bogatzevska, N. (2007) Biodiversity and incidence of Burkholderia species, Biotechnology and Biotechnological Equipment, 21, 306-310, doi: https://doi.org/10.1080/13102818.2007.10817465 .

    Article  Google Scholar 

  51. Antunes, L., Visca, P., and Towner, K. J. (2014) Acinetobacter baumannii: evolution of a global pathogen, Pathog. Dis., 71, 292-301, doi: https://doi.org/10.1111/2049-632X.12125 .

    CAS  Article  Google Scholar 

  52. Davin-Regli, A. (2015) Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment, Front. Microbiol., 6, 392, doi: https://doi.org/10.3389/fmicb.2015.00392 .

    Article  Google Scholar 

  53. Lebeaux, D., Lanternier, F., Degand, N., Catherinot, E., Podglajen, I., Rubio, M. T., Suarez, F., Lecuit, M., Mainardi, J.-L., and Lortholary, O. (2010) Nocardia pseudobrasiliensis as an emerging cause of opportunistic infection after allogeneic hematopoietic stem cell transplantation, J. Clin. Microbiol., 48, 656-659, doi: https://doi.org/10.1128/JCM.01244-09 .

    Article  Google Scholar 

  54. Baba, H., Nada, T., Ohkusu, K., Ezaki, T., Hasegawa, Y., and Paterson, D. L. (2009) First case of bloodstream infection caused by Rhodococcus erythropolis, J. Clin. Microbiol., 47, 2667-2669, doi: https://doi.org/10.1128/JCM.00294-09 .

    Article  Google Scholar 

  55. Hong, S. K., Lee, J. S., and Kim, E. C. (2015) First Korean case of Cedecea lapagei pneumonia in a patient with chronic obstructive pulmonary disease, Ann. Lab. Med., 35, 266-268, doi: https://doi.org/10.3343/alm.2015.35.2.266 .

    Article  Google Scholar 

  56. Herrera, V. R. C., De Silva, M. F. R., Alcaraz, H. O., Espiritu, G. C., Peña, K. C., and Melnikov, V. (2018) Death related to Cedecea lapagei in a soft tissue bullae infection: a case report, J. Med. Case Rep., 12, 328, doi: https://doi.org/10.1186/s13256-018-1866-x .

    Article  Google Scholar 

  57. Vandamme, P., Peeters, C., De Smet, B., Price, E. P., Sarovich, D. S., Henry, D. A., Hird, T. J., Zlosnik, J. E. A., Mayo, M., Warner, J., Baker, A., Currie, B. J., and Carlier, A. (2017) Comparative genomics of Burkholderia singularis sp. nov., a low G+C content, free-living bacterium that defies taxonomic dissection of the genus Burkholderia, Front. Microbiol., 8, 1679, doi: https://doi.org/10.3389/fmicb.2017.01679 .

    Article  Google Scholar 

  58. De Smet, B., Mayo, M., Peeters, C., Zlosnik, J. E., Spilker, T., Hird, T. J., LiPuma, J. J., Kidd, T. J., Kaestli, M., Ginther, J. L., Wagner, D. M., Keim, P., Bell, S. C., Jacobs, J. A., Currie, B. J., and Vandamme, P. (2015) Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources, Int. J. Syst. Evol. Microbiol., 65, 2265-2271, doi: https://doi.org/10.1099/ijs.0.000251 .

    CAS  Article  Google Scholar 

  59. Segonds, C., Clavel-Batut, P., Thouverez, M., Grenet, D., Le Coustumier, A., Plésiat, P., and Chabanon, G. (2009) Microbiological and epidemiological features of clinical respiratory isolates of Burkholderia gladioli, J. Clin. Microbiol., 47, 1510-1516, doi: https://doi.org/10.1128/JCM.02489-08 .

    Article  Google Scholar 

  60. Quon, B. S., Reid, J. D., Wong, P., Wilcox, P. G., Javer, A., Wilson, J. M., and Levy, R. D. (2011) Burkholderia gladioli – a sessorictor of poor outcome in cystic fibrosis patients who receive lung transplants? A case of locally invasive rhinosinusitis and persistent bacteremia in a 36-year-old lung transplant recipient with cystic fibrosis, Can. Respir. J., 18, e64-e65, doi: https://doi.org/10.1155/2011/304179 .

    Article  Google Scholar 

  61. Imataki, O., Kita, N., Nakayama-Imaohji, H., Kida, J. I., Kuwahara, T., and Uemura, M. (2014) Bronchiolitis and bacteraemia caused by Burkholderia gladioli in a non-lung transplantation patient, New Microbes New Infect., 2, 175, doi: https://doi.org/10.1002/nmi2.64 .

    CAS  Article  Google Scholar 

  62. Haraga, A., West, T. E., Brittnacher, M. J., Skerrett, S. J., and Miller, S. I. (2008) Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei, Infect. Immun., 76, 5402-5411, doi: https://doi.org/10.1128/IAI.00626-08 .

    CAS  Article  Google Scholar 

  63. Thatcher, L. F., Myers, C. A., O’Sullivan, C. A., and Roper, M. M. (2017) Draft genome sequence of Rhodococcus sp. strain 66b, Genome Announc., 5, e00229-17, doi: https://doi.org/10.1128/genomeA.00229-17 .

    Article  Google Scholar 

  64. Han, J. I., Spain, J. C., Leadbetter, J. R., Ovchinnikova, G., Goodwin, L. A., Han, C. S., Woyke, T., Davenport, K. W., and Orwin, P. M. (2013) Genome of the root-associated plant growth-promoting bacterium Variovorax paradoxus strain EPS, Genome Announc., 1, e00843-13, doi: https://doi.org/10.1128/genomeA.00843-13 .

    Article  Google Scholar 

  65. Han, J. I., Choi, H. K., Lee, S. W., Orwin, P. M., Kim, J., LaRoe, S. L., Kim, T.-G., O’Neil, J., Leadbetter, J. R., Lee, S. Y., Hur, C.-G., Spain, J. C., Ovchinnikova, G., Goodwin, L., and Han, C. (2011) Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110, J. Bacteriol., 193, 1183-1190, doi: https://doi.org/10.1128/JB.00925-10 .

    CAS  Article  Google Scholar 

  66. Chung, E. J., Park, J. A., Jeon, C. O., and Chung, Y. R. (2015) Gynuella sunshinyii gen. nov., sp. nov., an antifungal rhizobacterium isolated from a halophyte, Carex scabrifolia Steud, Int. J. Syst. Evol. Microbiol., 65, 1038-1043, doi: https://doi.org/10.1099/ijs.0.000060 .

    CAS  Article  Google Scholar 

  67. Gibb, A. P., Martin, K. M., Davidson, G. A., Walker, B., and Murphy, W. G. (1995) Rate of growth of Pseudomonas fluorescens in donated blood, J. Clin. Pathol., 48, 717-718, doi: https://doi.org/10.1136/jcp.48.8.717 .

    CAS  Article  Google Scholar 

  68. Gershman, M. D., Kennedy, D. J., Noble-Wang, J., Kim, C., Gullion, J., Kacica, M., Jensen, B., Pascoe, N., Saiman, L., McHale, J., Wilkins, M., Schoonmaker-Bopp, D., Clayton, J., Arduino, M., Srinivasan, A., and Pseudomonas fluorescens Investigation Team (2008) Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy, Clin. Infect. Dis., 47, 1372-1379, doi: https://doi.org/10.1086/592968 .

    Article  Google Scholar 

  69. Walker, T. S., Bais, H. P., Déziel, E., Schweizer, H. P., Rahme, L. G., Fall, R., and Vivanco, J. M. (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation, Plant Physiol., 134, 320-331, doi: https://doi.org/10.1104/pp.103.027888 .

    CAS  Article  Google Scholar 

  70. Rahme, L. G., Ausubel, F. M., Cao, H., Drenkard, E., Goumnerov, B. C., Lau, G. W., Mahajan-Miklos, S., Plotnikova, J., Tan, M. W., Tsongalis, J., Walendziewicz, C. L., and Tompkins, R. G. (2000) Plants and animals share functionally common bacterial virulence factors, Proc. Natl. Acad. Sci. USA, 97, 8815-8821, doi: https://doi.org/10.1073/pnas.97.16.8815 .

    CAS  Article  Google Scholar 

  71. Van Baarlen, P., Van Belkum, A., Summerbell, R. C., Crous, P. W., and Thomma, B. P. (2007) Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps?, FEMS Microbiol. Rev., 31, 239-277, doi: https://doi.org/10.1111/j.1574-6976.2007.00065.x .

    CAS  Article  Google Scholar 

  72. Relman, D. A., and Falkow, S. (2015) A molecular perspective of microbial pathogenicity, in Principles and Practice of Infectious Diseases, Eighth Edition (Bennett, J. E., Dolin, R., and Blaser, M. J., eds.) Elsevier Saunders, Philadelphia, pp. 1-10.

  73. Singh, A., Vaidya, B., Khatri, I., Srinivas, T. N. R., Subramanian, S., Korpole, S., and Pinnaka, A. K. (2014) Grimontia indica AK16T, sp. nov., isolated from a seawater sample reports the presence of pathogenic genes similar to Vibrio genus, PLoS One, 9, e85590, doi: https://doi.org/10.1371/journal.pone.0085590 .

    CAS  Article  Google Scholar 

  74. Nakai, R., Fujisawa, T., Nakamura, Y., Baba, T., Nishijima, M., Karray, F., Sami Sayadi, S., Isoda, N., Naganuma, T., and Niki, H. (2016) Genome sequence and overview of Oligoflexus tunisiensis Shr3 T in the eighth class Oligoflexia of the phylum Proteobacteria, Stand. Genomic. Sci., 11, 90, doi: https://doi.org/10.1186/s40793-016-0210-6 .

    CAS  Article  Google Scholar 

  75. Nishijima, M., Adachi, K., Katsuta, A., Shizuri, Y., and Yamasato, K. (2013) Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007, Int. J. Syst. Evol. Microbiol., 63, 709-714, doi: https://doi.org/10.1099/ijs.0.042077-0 .

    CAS  Article  Google Scholar 

  76. Schmidt, E. W., Obraztsova, A. Y., Davidson, S. K., Faulkner, D. J., and Haygood, M. G. (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium,“Candidatus Entotheonella palauensis”, Marine Biol., 136, 969-977, doi: https://doi.org/10.1007/s002270000273 .

    CAS  Article  Google Scholar 

  77. McCauley, E. P., Haltli, B., and Kerr, R. G. (2015) Description of Pseudobacteriovorax antillogorgiicola gen. nov., sp. nov., a bacterium isolated from the gorgonian octocoral Antillogorgia elisabethae, belonging to the family Pseudobacteriovoracaceae fam. nov., within the order Bdellovibrionales, Int. J. Syst. Evol. Microbiol., 65, 522-530, doi: https://doi.org/10.1099/ijs.0.066266-0 .

    CAS  Article  Google Scholar 

  78. Thompson, F. L., Thompson, C. C., Naser, S., Hoste, B., Vandemeulebroecke, K., Munn, C., Bourne, D., and Swings, J. (2005) Photobacterium rosenbergii sp. nov. and Enterovibrio coralii sp. nov., vibrios associated with coral bleaching, Int. J. Syst. Evol. Microbiol., 55, 913-917, doi: https://doi.org/10.1099/ijs.0.63370-0 .

    CAS  Article  Google Scholar 

  79. Pascual, J., Macian, M. C., Arahal, D. R., Garay, E., and Pujalte, M. J. (2009) Description of Enterovibrio nigricans sp. nov., reclassification of Vibrio calviensis as Enterovibrio calviensis comb. nov. and emended description of the genus Enterovibrio Thompson et al. 2002, Int. J. Syst. Evol. Microbiol., 59, 698-704, doi: https://doi.org/10.1099/ijs.0.001990-0 .

    CAS  Article  Google Scholar 

  80. Thompson, F. L., Hoste, B., Thompson, C. C., Goris, J., Gomez-Gil, B., Huys, L., De Los, P., and Swings, J. (2002) Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae, Int. J. Syst. Evol. Microbiol., 52, 2015-2022, doi: https://doi.org/10.1099/00207713-52-6-2015 .

    CAS  Article  Google Scholar 

  81. URL: https://thefishsite.com/articles/nocardia-seriolae-a-chronic-problem.

  82. Hurst, S., Rowedder, H., Michaels, B., Bullock, H., Jackobeck, R., Abebe-Akele, F., Durakovic, U., Gately, J., Janicki, E., and Tisa, L. S. (2015) Elucidation of the Photorhabdus temperata genome and generation of a transposon mutant library to identify motility mutants altered in pathogenesis, J. Bacteriol., 197, 2201-2216, doi: https://doi.org/10.1128/JB.00197-15 .

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Kurakin.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with animals or human participants performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurakin, G.F., Samoukina, A.M. & Potapova, N.A. Bacterial and Protozoan Lipoxygenases Could be Involved in Cell-to-Cell Signaling and Immune Response Suppression. Biochemistry Moscow 85, 1048–1063 (2020). https://doi.org/10.1134/S0006297920090059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920090059

Keywords

  • lipoxygenases
  • bacteria
  • protozoa
  • bioinformatics
  • phylogenetics
  • signaling
  • multicellularity
  • opportunistic pathogens