Skip to main content
Log in

Phytofluene as a Highly Efficient UVA Photosensitizer of Singlet Oxygen Generation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Phytoene and phytofluene – uncolored C40 carotenoids with short chain of conjugated double bonds (3 and 5, respectively) – are known to be universal precursors in biosynthesis of colored carotenoids in photosynthesizing organisms. It is commonly recognized that C40 carotenoids are photoprotectors of cells and tissues. We have shown that phytofluene is an exception to this rule. By measuring photosensitized phosphorescence of singlet oxygen (1O2) we found out that phytofluene was very effective photosensitizer of 1O2 formation in aerated solutions under UVA irradiation (quantum yield of 85 ± 5%), whereas phytoene was almost inactive in this process. It was demonstrated that both carotenoids quench singlet oxygen in the dark. The obtained quenching rate constants [(4 ± 1) × 106 M–1·s–1 for phytoene and (2 ± 0.5) × 107 M–1·s–1 for phytofluene] were smaller than the rate constant of the diffusion-controlled reactions by 3-4 orders of magnitude. Thus, both carotenoids displayed rather weak protector properties. Moreover, phytofluene due to its high photosensitizing activity might be considered as a promoter of cell photodamage and a promising UVA photosensitizer for medical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

CDB(s):

conjugated double bond(s)

1O2 :

singlet oxygen

UV:

ultra violet

Φ Δ :

the quantum yield of 1O2 generation

REFERENCES

  1. Britton, G. (2008) Functions of Intact Carotenoids., in Carotenoids.NaturalFunctions (Britton, G., Liaaen-Jensen, S., and Pfanger, H. eds.) Birkhauser Verlag, Switzerland, pp. 265-308.

  2. Edge, R., and Truscott, T. G. (2018) Singlet oxygen and free radical reactions of retinoids and carotenoids – a review, Antioxidants, 7, 5-16.

    Article  Google Scholar 

  3. Krasnovsky, A. A., Jr., and Kagan, V. E. (1979) Photosensitization and quenching of singlet oxygen by pigments and lipids of photoreceptor cells of the retina, FEBS Lett., 108, 152-154.

    Article  Google Scholar 

  4. Ostrovskii, M. A., and Fedorovich, I. B. (1994) Retinal as sensitizer of photodamage of retinal-containing proteins in the retina of the eye, Biophysics, 39, 13-25.

    CAS  Google Scholar 

  5. Krasnovskii, A. A., Jr. (1986) Singlet oxygen in photosynthesizing organisms, Zhurn. Vsesoyuz. Khim. Obsch. im. D. I. Mendeleeva, (Mendeleev Chemical Journal), 31, 562-567.

    CAS  Google Scholar 

  6. Makhneva, Z. K., Erokhin, Yu. E., and Moskalenko, A. A. (2007) Carotenoid-photosensitized oxidation of bacteriochlorophyll dimers in light-harvesting complexes B800-850 in Allochromatium minutissimum cells, Dokl. Biochem. Biophys., 416, 256-259.

    Article  Google Scholar 

  7. Makhneva, Z. K., Bolshakov, M. A., Ashikhmin, A. A., Erokhin, Y. E., and Moskalenko, A. A. (2009) Influence of blue light on the structure stability of antenna complexes from Allochromatium minutissimum with different content of carotenoids, Biochemistry Suppl. Ser. A Membr. Cell Biol., 3, 123-127.

    Google Scholar 

  8. Makhneva, Z. K., Ashikhmin, A. A., Bolshakov, M. A., and Moskalenko, A. A. (2020) Carotenoids are probably involved in singlet oxygen generation in the membranes of purple photosynthetic bacteria under light irradiation, Microbiology, 89, 164-173.

    Article  CAS  Google Scholar 

  9. Makhneva, Z. K., Ashikhmin, A. A., Bolshakov, M. A., and Moskalenko, A. A. (2019) Bacteriochlorophyll interaction with singlet oxygen in membranes of purple photosynthetic bacteria: does the protective function of carotenoids exist? Dokl. Biochem. Biophys., 486, 216-219.

    Article  CAS  Google Scholar 

  10. Makhneva, Z. K., Ashikhmin, A. A., Bolshakov, M. A., and Moskalenko, A. A. (2019) Quenchers protect BChl850 from action of singlet oxygen in the membranes of a sulfur photosynthetic bacterium Allochromatium vinosum Strain MSU, Microbiology, 88, 79-86.

    Article  CAS  Google Scholar 

  11. Meléndez-Martínez, A. J., Stinco, C. M., and Mapelli-Brahm, P. (2019) Skin carotenoids in public health and nutricosmetics: the emerging roles and applications of the UV radiation-absorbing colourless carotenoids phytoene and phytofluene, Nutrients, 11, 1093.

    Article  Google Scholar 

  12. Meléndez-Martínez, A. J., Mapelli-Brahm, P., and Stinco, C. M. (2018) The colourless carotenoids phytoene and phytofluene: from dietary sources to their usefulness for the functional foods and nutricosmetics industries, J. Food Composit. Anal., 67, 91-103.

    Article  Google Scholar 

  13. Mathis, P., and Kleo, J. (1973) The triplet state of β-carotene and of analog polyenes of different length, Photochem. Photobiol., 18, 343-346.

    Article  CAS  Google Scholar 

  14. Bensasson, R., Land, E. J., and Maudinas, B. (1976) Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet pulse irradiation, Photochem. Photobiol., 23, 189-193.

    Article  CAS  Google Scholar 

  15. Krasnovsky, A. A., Jr. (1979) Photoluminescence of singlet oxygen in pigment solutions, Photochem. Photobiol., 29, 29-36.

    Article  CAS  Google Scholar 

  16. Moskalenko, A. A., and Makhneva, Z. K. (2012) Light-harvesting complexes from purple sulfur bacteria Allochromatiumminutissimum assembled without carotenoids, J. Photochem. Photobiol. B Biol., 108, 1-7.

    Article  CAS  Google Scholar 

  17. Ashikhmin, A., Makhneva, Z., Bolshakov, M., and Moskalenko, A. (2014) Distribution of colored carotenoids between light-harvesting complexes in the process of recovering carotenoid biosynthesis in Ectothiorhodospira haloalkaliphila cells, J. Photochem. Photobiol. B Biol., 141, 59-66.

    Article  CAS  Google Scholar 

  18. Ashikhmin, A., Makhneva, Z., Bolshakov, M., and Moskalenko, A. (2017) Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria, J. Photochem. Photobiol. B Biol., 170, 99-107.

    Article  CAS  Google Scholar 

  19. Krasnovsky, A. A., Jr., Benditkis, A. S., and Kozlov, A. S. (2019) Kinetic measurements of singlet oxygen phosphorescence in the solvents lacking hydrogen atoms using the method of time resolved photon counting, Biochemistry (Moscow), 84, 153-163.

    Article  CAS  Google Scholar 

  20. Oliveros, E., Suardi-Murasecco, P., Aminian-Saghafi, T., and Braun, A. M. (1991) 1H-Phenalen-1-one: photophysical properties and singlet oxygen production, Helv. Chim. Acta, 74, 79-90.

    Article  CAS  Google Scholar 

  21. Schmidt, R., Tanelian, C., Dunsbach, R., and Wolf, C. (1994) Phenalenone, a universal compound for the determination of quantum yields of singlet oxygen O2 (1Δg) sensitization, J. Photochem. Photobiol. A Chem., 79, 11-17.

    Article  CAS  Google Scholar 

  22. Britton, G. (1995) UV/visible spectroscopy, in Carotenoids (Britton, G., Liaaen-Jensen, S., and Pfander, H., eds.) vol. 1B, Birkhäuser Verlag, Basel.

  23. Mathews-Roth, M. M., Wilson, T., Fujimori, E., and Krinsky, N. I. (1974) Carotenoid chromophore length and protection against photosensitisation, Photochem. Photobiol., 19, 217-222.

    Article  CAS  Google Scholar 

  24. Cogdell, R. J., Gillbro, T., Andersson, P. O., Liu, R. S. H., and Asato, A. E. (1994) Carotenoids as accessory light-harvesting pigments, Pure Appl. Chem., 66, 1041-1046.

    Article  CAS  Google Scholar 

  25. Andersson, P. O., Takaichi, S., Cogdell, R. J., and Gillbro, T. (2001) Photophysical characterization of natural cis-carotenoids, Photochem. Photobiol., 74, 549-557.

    Article  CAS  Google Scholar 

  26. Fraikin, G. Y., and Rubin, L. B. (1979) Some physiological effects of near-ultraviolet light on microorganisms, Photochem. Photobiol., 29, 185-187.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to companies “Polironik Ltd.” (Moscow) and “Alkom Medika Ltd.” (St. Petersburg) for technical assistance and to “Pimimvest” (Moscow) for purification of the solvents.

Funding

This study was financially supported in part by the Russian Foundation for Basic Research (projects Nos. 18-04-00684-a and 19-04-00331-a), and by the State Assignments of the Federal Research Centre for Biotechnology, Russian Academy of Sciences, Moscow, and by the Federal Research Centre “Pushchino Scientific Center for Biological Research”, Russian Academy of Sciences, Pushchino, Russia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Ashikhmin, A. S. Benditkis, A. A. Moskalenko or A. A. Krasnovsky Jr..

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashikhmin, A., Benditkis, A., Moskalenko, A. et al. Phytofluene as a Highly Efficient UVA Photosensitizer of Singlet Oxygen Generation. Biochemistry Moscow 85, 773–780 (2020). https://doi.org/10.1134/S0006297920070056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920070056

Keywords

Navigation