Skip to main content
Log in

The Role of Liquid–Liquid Phase Separation in the Compartmentalization of Cell Nucleus and Spatial Genome Organization

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Functional compartmentalization of the cell nucleus plays an important role in the regulation of genome activity by providing accumulation of enzymes and auxiliary factors in the reaction centers, such as transcription factories, Cajal bodies, speckles, etc. The mechanisms behind the nucleus functional compartmentalization are still poorly understood. There are reasons to believe that the key role in the nucleus compartmentalization belongs to the process of liquid–liquid phase separation. In this brief review, we analyze results of experimental studies demonstrating that liquid–liquid phase separation not only governs functional compartmentalization of the cell nucleus but also contributes to the formation of the 3D genomic architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

IC:

interchromatin compartment

IDR:

intrinsically disordered region

REFERENCES

  1. Hancock, R. (2004) Internal organisation of the nucleus: assembly of compartments by macromolecular crowding and the nuclear matrix model, Biol. Cell, 96, 595-601.

    CAS  PubMed  Google Scholar 

  2. Hancock, R. (2004) A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus, J. Struct. Biol., 146, 281-290, doi: 10.1016/j.jsb.2003.12.008.

    CAS  PubMed  Google Scholar 

  3. Hancock, R. (2018) Crowding, entropic forces, and confinement: crucial factors for structures and functions in the cell nucleus, Biochemistry (Moscow), 83, 326-337, doi: 10.1134/S0006297918040041.

    CAS  Google Scholar 

  4. Marenduzzo, D., Finan, K., and Cook, P. R. (2006) The depletion attraction: an underappreciated force driving cellular organization, J. Cell. Biol., 175, 681-686, doi: 10.1083/jcb.200609066.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Razin, S. V., Gavrilov, A. A., Pichugin, A., Lipinski, M., Iarovaia, O. V., and Vassetzky, Y. S. (2011) Transcription factories in the context of the nuclear and genome organization, Nucleic Acids Res., 39, 9085-9092, doi: 10.1093/nar/gkr683.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Erdel, F., and Rippe, K. (2018) Formation of chromatin subcompartments by phase separation, Biophys. J., 114, 2262-2270, doi: 10.1016/j.bpj.2018.03.011.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Boeynaems, S., Alberti, S., Fawzi, N. L., Mittag, T., Polymenidou, M., Rousseau, F., Schymkowitz, J., Shorter, J., Wolozin, B., Van Den Bosch, L., Tompa, P., and Fuxreiter, M. (2018) Protein phase separation: a new phase in cell biology, Trends Cell. Biol., 28, 420-435, doi: 10.1016/j.tcb.2018.02.004.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Uversky, V. N. (2017) Protein intrinsic disorder-based liquid–liquid phase transitions in biological systems: complex coacervates and membrane-less organelles, Adv. Coll. Interface Sci., 239, 97-114, doi: 10.1016/j.cis.2016.05.012.

    CAS  Google Scholar 

  9. Meng, F., Na, I., Kurgan, L., and Uversky, V. N. (2015) Compartmentalization and functionality of nuclear disorder: intrinsic disorder and protein–protein interactions in intra-nuclear compartments, Intern. J. Mol. Sci., 17, doi: 10.3390/ijms17010024.

    Google Scholar 

  10. Darling, A. L., Liu, Y., Oldfield, C. J., and Uversky, V. N. (2018) Intrinsically disordered proteome of human membrane-less organelles, Proteomics, 18, e1700193, doi: 10.1002/pmic.201700193.

    Google Scholar 

  11. Uversky, V. N. (2017) Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder, Curr. Opin. Struct. Biol., 44, 18-30, doi: 10.1016/j.sbi.2016.10.015.

    CAS  PubMed  Google Scholar 

  12. Turner, A. L., Watson, M., Wilkins, O. G., Cato, L., Travers, A., Thomas, J. O., and Stott, K. (2018) Highly disordered histone H1–DNA model complexes and their condensates, Proc. Natl. Acad. Sci. USA, 115, 11964-11969, doi: 10.1073/pnas.1805943115.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Larson, A. G., Elnatan, D., Keenen, M. M., Trnka, M. J., Johnston, J. B., Burlingame, A. L., Agard, D. A., Redding, S., and Narlikar, G. J. (2017) Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin, Nature, 547, 236-240, doi: 10.1038/nature22822.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tatavosian, R., Kent, S., Brown, K., Yao, T., Duc, H. N., Huynh, T. N., Zhen, C. Y., Ma, B., Wang, H., and Ren, X. (2019) Nuclear condensates of the polycomb protein chromobox 2 (CBX2) assemble through phase separation, J. Biol. Chem., 294, 1451-1463, doi: 10.1074/jbc.RA118.006620.

    CAS  PubMed  Google Scholar 

  15. Boehning, M., Dugast-Darzacq, C., Rankovic, M., Hansen, A. S., Yu, T., Marie-Nelly, H., McSwiggen, D. T., Kokic, G., Dailey, G. M., Cramer, P., Darzacq, X., and Zweckstetter, M. (2018) RNA polymerase II clustering through carboxy-terminal domain phase separation, Nat. Struct. Mol. Biol., 25, 833-840, doi: 10.1038/s41594-018-0112-y.

    CAS  PubMed  Google Scholar 

  16. Nagulapalli, M., Maji, S., Dwivedi, N., Dahiya, P., and Thakur, J. K. (2016) Evolution of disorder in mediator complex and its functional relevance, Nucleic Acids Res., 44, 1591-1612, doi: 10.1093/nar/gkv1135.

    PubMed  Google Scholar 

  17. Alberti, S., Gladfelter, A., and Mittag, T. (2019) Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates, Cell, 176, 419-434, doi: 10.1016/j.cell.2018.12.035.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sabari, B. R., Dall’Agnese, A., Boija, A., Klein, I. A., Coffey, E. L. et al. (2018) Coactivator condensation at super-enhancers links phase separation and gene control, Science, 361, doi: 10.1126/science.aar3958.

    Google Scholar 

  19. Cho, W. K., Spille, J. H., Hecht, M., Lee, C., Li, C., Grube, V., and Cisse, I. I. (2018) Mediator and RNA polymerase II clusters associate in transcription-dependent condensates, Science, 361, 412-415, doi: 10.1126/science. aar4199.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hernandez-Verdun, D. (2006) The nucleolus: a model for the organization of nuclear functions, Histochem. Cell Biol., 126, 135-148, doi: 10.1007/s00418-006-0212-3.

    CAS  PubMed  Google Scholar 

  21. Yao, R. W., Xu, G., Wang, Y., Shan, L., Luan, P. F., Wang, Y., Wu, M., Yang, L. Z., Xing, Y. H., Yang, L., and Chen, L. L. (2019) Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus, Mol. Cell, 76, 767-783, e711, doi: 10.1016/j.molcel.2019.08.014.

    CAS  PubMed  Google Scholar 

  22. Correll, C. C., Bartek, J., and Dundr, M. (2019) The nucleolus: a multiphase condensate balancing ribosome synthesis and translational capacity in health, aging and ribosomopathies, Cells, 8, doi: 10.3390/cells8080869.

    Google Scholar 

  23. Ishov, A. M., Sotnikov, A. G., Negorev, D., Vladimirova, O. V., Neff, N., Kamitani, T., Yeh, E. T., Strauss, J. F. 3rd, and Maul, G. G. (1999) PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1, J. Cell. Biol., 147, 221-234, doi: 10.1083/jcb.147.2.221.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lallemand-Breitenbach, V., and de Thé, H. (2010) PML nuclear bodies, Cold Spring Harb. Perspect. Biol., 2, a000661.

    PubMed  PubMed Central  Google Scholar 

  25. Yamazaki, T., Nakagawa, S., and Hirose, T. (2020) Architectural RNAs for membraneless nuclear body formation, Cold Spring Harb. Symp. Quant. Biol., doi: 10.1101/sqb.2019.84.039404.

  26. Fox, A. H., and Lamond, A. I. (2010) Paraspeckles, Cold Spring Harb. Perspect. Biol., 2, a000687, doi: 10.1101/cshperspect.a000687.

    Google Scholar 

  27. Fox, A. H., Nakagawa, S., Hirose, T., and Bond, C. S. (2018) Paraspeckles: where long noncoding RNA meets phase separation, Trends Biochem. Sci., 43, 124-135, doi: 10.1016/j.tibs.2017.12.001.

    CAS  PubMed  Google Scholar 

  28. Shin, Y., Berry, J., Pannucci, N., Haataja, M. P., Toettcher, J. E., and Brangwynne, C. P. (2017) Spatiotemporal control of intracellular phase transitions using light-activated optodroplets, Cell, 168, 159-171, doi: 10.1016/j.cell.2016.11.054.

    CAS  PubMed  Google Scholar 

  29. Zhou, J., Fan, J. Y., Rangasamy, D., and Tremethick, D. J. (2007) The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression, Nat. Struct. Mol. Biol., 14, 1070-1076.

    CAS  PubMed  Google Scholar 

  30. Kalashnikova, A. A., Porter-Goff, M. E., Muthurajan, U. M., Luger, K., and Hansen, J. C. (2013) The role of the nucleosome acidic patch in modulating higher order chromatin structure, J. R. Soc. Interface, 10, 20121022, doi: 10.1098/rsif.2012.1022.

    Google Scholar 

  31. Sinha, D., and Shogren-Knaak, M. A. (2010) Role of direct interactions between the histone H4 tail and the H2A core in long range nucleosome contacts, J. Biol. Chem., 285, 16572-16581, doi: 10.1074/jbc.M109.091298.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pepenella, S., Murphy, K. J., and Hayes, J. J. (2014) Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure, Chromosoma, 123, 3-13, doi: 10.1007/s00412-013-0435-8.

    CAS  PubMed  Google Scholar 

  33. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution, Nature, 389, 251-260, doi: 10.1038/38444.

    CAS  PubMed  Google Scholar 

  34. Schalch, T., Duda, S., Sargent, D. F., and Richmond, T. J. (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre, Nature, 436, 138-141, doi: 10.1038/nature03686.

    CAS  PubMed  Google Scholar 

  35. Chodaparambil, J. V., Barbera, A. J., Lu, X., Kaye, K. M., Hansen, J. C., and Luger, K. (2007) A charged and contoured surface on the nucleosome regulates chromatin compaction, Nat. Struct. Mol. Biol., 14, 1105-1107, doi: 10.1038/nsmb1334.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Q., Yang, R., Korolev, N., Liu, C. F., and Nordenskiold, L. (2017) Regulation of nucleosome stacking and chromatin compaction by the histone H4 N-terminal tail-H2A acidic patch interaction, J. Mol. Biol., 429, 2075-2092, doi: 10.1016/j.jmb.2017.03.016.

    CAS  PubMed  Google Scholar 

  37. Gibson, B. A., Doolittle, L. K., Schneider, M. W. G., Jensen, L. E., Gamarra, N., Henry, L., Gerlich, D. W., Redding, S., and Rosen, M. K. (2019) Organization of chromatin by intrinsic and regulated phase separation, Cell, 179, 470-484, doi: 10.1016/j.cell.2019.08.037.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shakya, A., Park, S., Rana, N., and King, J. T. (2020) Liquid–liquid phase separation of histone proteins in cells: role in chromatin organization, Biophys. J., 118, 753-764, doi: 10.1016/j.bpj.2019.12.022.

    CAS  PubMed  Google Scholar 

  39. Strom, A. R., Emelyanov, A. V., Mir, M., Fyodorov, D. V., Darzacq, X., and Karpen, G. H. (2017) Phase separation drives heterochromatin domain formation, Nature, 547, 241-245, doi: 10.1038/nature22989.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Strom, A. R., and Brangwynne, C. P. (2019) The liquid nucleome – phase transitions in the nucleus at a glance, J. Cell. Sci., 132, jcs235093, doi: 10.1242/jcs.235093.

    Google Scholar 

  41. Plys, A. J., Davis, C. P., Kim, J., Rizki, G., Keenen, M. M., Marr, S. K., and Kingston, R. E. (2019) Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2, Genes Dev., 33, 799-813, doi: 10.1101/gad.326488.119.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng, A., and Weber, S. C. (2019) Evidence for and against liquid–liquid phase separation in the nucleus, Noncoding RNA, 5, doi: 10.3390/ncrna5040050.

    Google Scholar 

  43. Boija, A., Klein, I. A., Sabari, B. R., Dall’Agnese, A., Coffey, E. L., Zamudio, A. V., Li, C. H., Shrinivas, K., Manteiga, J. C., Hannett, N. M., Abraham, B. J., Afeyan, L. K., Guo, Y. E., Rimel, J. K., Fant, C. B., Schuijers, J., Lee, T. I., Taatjes, D. J., and Young, R. A. (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains, Cell, 175, 1842-1855, doi: 10.1016/j.cell.2018.10.042.

    CAS  PubMed  Google Scholar 

  44. Tarczewska, A., and Greb-Markiewicz, B. (2019) The significance of the intrinsically disordered regions for the functions of the bHLH transcription factors, Intern. J. Mol. Sci., 20, doi: 10.3390/ijms20215306.

    Google Scholar 

  45. Cremer, T., and Cremer, M. (2010) Chromosome territories, Cold Spring Harb. Perspect. Biol., 2, a003889, doi: 10.1101/cshperspect.a003889.

    Google Scholar 

  46. Cremer, T., Cremer, M., Hubner, B., Silahtaroglu, A., Hendzel, M., Lanctot, C., Strickfaden, H., and Cremer, C. (2020) The interchromatin compartment participates in the structural and functional organization of the cell nucleus, BioEssays, 42, e1900132, doi: 10.1002/bies.201900132.

    Google Scholar 

  47. Cremer, T., Cremer, M., and Cremer, C. (2018) The 4D nucleome: genome compartmentalization in an evolutionary context, Biochemistry (Moscow), 83, 313-325, doi: 10.1134/S000629791804003X.

    CAS  Google Scholar 

  48. Garcia-Jove Navarro, M., Kashida, S., Chouaib, R., Souquere, S., Pierron, G., Weil, D., and Gueroui, Z. (2019) RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates, Nat. Commun., 10, 3230, doi: 10.1038/s41467-019-11241-6.

    Google Scholar 

  49. Fay, M. M., and Anderson, P. J. (2018) The role of RNA in biological phase separations, J. Mol. Biol., 430, 4685-4701, doi: 10.1016/j.jmb.2018.05.003.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fedoriw, A. M., Starmer, J., Yee, D., and Magnuson, T. (2012) Nucleolar association and transcriptional inhibition through 5S rDNA in mammals, PLoS Genet., 8, e1002468, doi: 10.1371/journal.pgen.1002468.

    Google Scholar 

  51. Bersaglieri, C., and Santoro, R. (2019) Genome organization in and around the nucleolus, Cells, 8, doi: 10.3390/cells8060579.

    Google Scholar 

  52. Chen, Y., Zhang, Y., Wang, Y., Zhang, L., Brinkman, E. K., Adam, S. A., Goldman, R., van Steensel, B., Ma, J., and Belmont, A. S. (2018) Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler, J. Cell. Biol., 217, 4025-4048, doi: 10.1083/jcb.201807108.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Quinodoz, S. A., Ollikainen, N., Tabak, B., Palla, A., Schmidt, J. M., Detmar, E., Lai, M. M., Shishkin, A. A., Bhat, P., Takei, Y., Trinh, V., Aznauryan, E., Russell, P., Cheng, C., Jovanovic, M., Chow, A., Cai, L., McDonel, P., Garber, M., and Guttman, M. (2018) Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus, Cell, 174, 744-757, doi: 10.1016/j.cell.2018.05.024.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, J., Venkata, N. C., Hernandez Gonzalez, G. A., Khanna, N., and Belmont, A. S. (2020) Gene expression amplification by nuclear speckle association, J. Cell. Biol., 219, e201904046, doi: 10.1083/jcb.201904046.

    Google Scholar 

  55. Dundr, M. (2012) Nuclear bodies: multifunctional companions of the genome, Curr. Opin. Cell. Biol., 24, 415-422, doi: 10.1016/j.ceb.2012.03.010.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sawyer, I. A., Sturgill, D., and Dundr, M. (2019) Membraneless nuclear organelles and the search for phases within phases, Wiley Interdiscip. Rev. RNA, 10, e1514, doi: 10.1002/wrna.1514.

    Google Scholar 

  57. Wang, Q., Sawyer, I. A., Sung, M. H., Sturgill, D., Shevtsov, S. P., Pegoraro, G., Hakim, O., Baek, S., Hager, G. L., and Dundr, M. (2016) Cajal bodies are linked to genome conformation, Nat. Commun., 7, 10966, doi: 10.1038/ncomms10966.

    Google Scholar 

  58. Carter, D. R., Eskiw, C., and Cook, P. R. (2008) Transcription factories, Biochem. Soc. Trans., 36, 585-589, doi: 10.1042/BST0360585.

    CAS  PubMed  Google Scholar 

  59. Hozak, P., Hassan, A. B., Jackson, D. A., and Cook, P. R. (1993) Visualization of replication factories attached to nucleoskeleton, Cell, 73, 361-373.

    CAS  PubMed  Google Scholar 

  60. Iborra, F. J., Pombo, A., Jackson, D. A., and Cook, P. R. (1996) Active RNA polymerases are localized within discrete transcription “factories” in human nuclei, J. Cell Sci., 109, 1427-1436.

    CAS  PubMed  Google Scholar 

  61. Jackson, D. A., Hassan, A. B., Errington, R. J., and Cook, P. R. (1993) Visualization of focal sites of transcription within human nuclei, EMBO J., 12, 1059-1065.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sutherland, H., and Bickmore, W. A. (2009) Transcription factories: gene expression in unions? Nat. Rev. Genet., 10, 457-466.

    CAS  PubMed  Google Scholar 

  63. Cook, P. R., and Marenduzzo, D. (2018) Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations, Nucleic Acids Res., 46, 9895-9906, doi: 10.1093/nar/gky763.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Osborne, C. S., Chakalova, L., Brown, K. E., Carter, D., Horton, A., Debrand, E., Goyenechea, B., Mitchell, J. A., Lopes, S., Reik, W., and Fraser, P. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription, Nat. Genet., 36, 1065-1071.

    CAS  PubMed  Google Scholar 

  65. Osborne, C. S., Chakalova, L., Mitchell, J. A., Horton, A., Wood, A. L., Bolland, D. J., Corcoran, A. E., and Fraser, P. (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh, PLoS Biol., 5, e192.

    PubMed  PubMed Central  Google Scholar 

  66. Ulianov, S. V., Doronin, S. A., Khrameeva, E. E., Kos, P. I., Luzhin, A. V., Starikov, S. S., Galitsyna, A. A., Nenasheva, V. V., Ilyin, A. A., Flyamer, I. M., Mikhaleva, E. A., Logacheva, M. D., Gelfand, M. S., Chertovich, A. V., Gavrilov, A. A., Razin, S. V., and Shevelyov, Y. Y. (2019) Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila, Nat. Commun., 10, 1176, doi: 10.1038/s41467-019-09185-y.

    Google Scholar 

  67. Arnold, C. D., Gerlach, D., Stelzer, C., Boryn, L. M., Rath, M., and Stark, A. (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq, Science, 339, 1074-1077, doi: 10.1126/science.1232542.

    CAS  PubMed  Google Scholar 

  68. Consortium, E. P., Bernstein, B. E., Birney, E., Dunham, I., Green, E. D., Gunter, C., and Snyder, M. (2012) An integrated encyclopedia of DNA elements in the human genome, Nature, 489, 57-74, doi: 10.1038/nature11247.

    Google Scholar 

  69. Furlong, E. E. M., and Levine, M. (2018) Developmental enhancers and chromosome topology, Science, 361, 1341-1345, doi: 10.1126/science.aau0320.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K., and Sharp, P. A. (2017) A phase separation model for transcriptional control, Cell, 169, 13-23, doi: 10.1016/j.cell.2017.02.007.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gurumurthy, A., Shen, Y., Gunn, E. M., and Bungert, J. (2019) Phase separation and transcription regulation: are super-enhancers and locus control regions primary sites of transcription complex assembly? BioEssays, 41, e1800164, doi: 10.1002/bies.201800164.

    Google Scholar 

  72. Arnold, P. R., Wells, A. D., and Li, X. C. (2019) Diversity and emerging roles of enhancer RNA in regulation of gene expression and cell fate, Front. Cell Develop. Biol., 7, 377, doi: 10.3389/fcell.2019.00377.

    Google Scholar 

  73. Nair, S. J., Yang, L., Meluzzi, D., Oh, S., Yang, F., Friedman, M. J., Wang, S., Suter, T., Alshareedah, I., Gamliel, A., Ma, Q., Zhang, J., Hu, Y., Tan, Y., Ohgi, K. A., Jayani, R. S., Banerjee, P. R., Aggarwal, A. K., and Rosenfeld, M. G. (2019) Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly, Nat. Struct. Mol. Biol., 26, 193-203, doi: 10.1038/s41594-019-0190-5.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hyman, A. A., Weber, C. A., and Julicher, F. (2014) Liquid–liquid phase separation in biology, Ann. Rev. Cell Dev. Biol., 30, 39-58, doi: 10.1146/annurev-cellbio-100913-013325.

    CAS  Google Scholar 

  75. Cramer, P. (2019) Organization and regulation of gene transcription, Nature, 573, 45-54, doi: 10.1038/s41586-019-1517-4.

    CAS  PubMed  Google Scholar 

  76. Guo, Y. E., Manteiga, J. C., Henninger, J. E., Sabari, B. R., Dall’Agnese, A., Hannett, N. M., Spille, J. H., Afeyan, L. K., Zamudio, A. V., Shrinivas, K., Abraham, B. J., Boija, A., Decker, T. M., Rimel, J. K., Fant, C. B., Lee, T. I., Cisse, I. I., Sharp, P. A., Taatjes, D. J., and Young, R. A. (2019) Pol II phosphorylation regulates a switch between transcriptional and splicing condensates, Nature, 572, 543-548, doi: 10.1038/s41586-019-1464-0.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Erdel, F., Rademacher, A., Vlijm, R., Tunnermann, J., Frank, L., Weinmann, R., Schweigert, E., Yserentant, K., Hummert, J., Bauer, C., Schumacher, S., Al Alwash, A., Normand, C., Herten, D. P., Engelhardt, J., and Rippe, K. (2020) Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid–liquid phase separation, Mol. Cell, 78, 236-249 doi: 10.1016/j.molcel.2020.02.005.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mir, M., Bickmore, W., Furlong, E. E. M., and Narlikar, G. (2019) Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase? Development, 146, doi: 10.1242/dev.182766.

    Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (project No. 18-14-00011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Razin.

Ethics declarations

This article does not contain studies with human participants or animals performed by any of the authors. The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razin, S., Gavrilov, A. The Role of Liquid–Liquid Phase Separation in the Compartmentalization of Cell Nucleus and Spatial Genome Organization. Biochemistry Moscow 85, 643–650 (2020). https://doi.org/10.1134/S0006297920060012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920060012

Keywords

Navigation