Skip to main content
Log in

Amino Acids as Regulators of Cell Metabolism

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this review, we discuss the principles of regulation and synchronization of metabolic processes in mammalian cells using a two-component model of cell metabolism consisting of a controlling signaling system that regulates major enzymatic cascades and executive metabolic system that directly performs biosynthetic reactions. This approach has allowed us to distinguish two transitional metabolic states (from catabolism to anabolism and vice versa) accompanied by major rearrangements in the signaling system. The signaling system of natural amino acids was selected, because amino acids are involved in both signaling and executive metabolic subsystems of general cell metabolism. We have developed a graphical representation of metabolic events that allowed us to demonstrate the succession of processes occurring in both metabolic subsystems during complete metabolic cycle in a non-dividing cell. An important revealed feature of the amino acid signaling system is that the signaling properties of amino acid are determined not only by their molecular structure, but also by the location within the cell. Four major signaling groups of amino acids have been identified that localize to lysosomes, mitochondria, cytosol, and extracellular space adjacent to the plasma membrane. Although these amino acids groups are similar in the composition, they have different receptors. We also proposed a scheme for the metabolism regulation by amino acids signaling that can serve as a basis for developing more complete spatio-temporal picture of metabolic regulation involving a wide variety of intracellular signaling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Table 2.

Similar content being viewed by others

Abbreviations

AA:

amino acid

GAP:

GTPase activating protein

GEF:

guanine nucleotide exchange facto

REFERENCES

  1. Smirnova, E. G., Nizhnii, S. V., and Yaguzhinsky, L. S. (1980) Method for determination of specific metabolic changes in rapidly proliferating tissues, Izv. Akad. Nauk SSSR, 636-653.

  2. Smirnova, E. G., Nizhnii, S. V., and Yaguzhinsky, L. S. (1982) The ratio of rates of metabolic processes in tumor cells, Izv. Akad. Nauk SSSR, 499-507.

  3. Weber, G. (1964) Enzyme regulation in mammalian tissues, Science, 146, 1489-1492, doi: 10.1126/science.146.3650.1489.

    Article  CAS  PubMed  Google Scholar 

  4. Weber, G., and Singhal, R. L. (1965) Insulin: inducer of phosphofructokinase. The integrative action of insulin at the enzyme biosynthetic level, Life Sci., 4, 1993-2002.

    Article  CAS  Google Scholar 

  5. Weber, G., Singhal, R. L., and Srivastava, S. K. (1965) Effect of nutritional state on hormonal regulation of liver enzymes, Can. J. Biochem., 43, 1549-1563.

    Article  CAS  Google Scholar 

  6. Pearce, L. R., Komander, D., and Alessi, D. R. (2010) The nuts and bolts of AGC protein kinases, Nat. Rev. Mol. Cell Biol., 11, 9-22, doi: 10.1038/nrm2822.

    Article  CAS  PubMed  Google Scholar 

  7. Sabatini, D. M. (2017) Twenty-five years of mTOR: uncovering the link from nutrients to growth, Proc. Natl. Acad. Sci. USA, 114, 11818-11825, doi: 10.1073/pnas.1716173114.

    Article  CAS  PubMed  Google Scholar 

  8. Herzig, S., and Shaw, R. J. (2018) AMPK: guardian of metabolism and mitochondrial homeostasis, Nat. Rev. Mol. Cell Biol., 19, 121-135, doi: 10.1038/nrm.2017.95.

    Article  CAS  PubMed  Google Scholar 

  9. Price, N. L., Gomes, A. P., Ling, A. J. Y., Duarte, F. V., Martin-Montalvo, A., North, B. J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J. S., Hubbard, B. P., Varela, A. T., Davis, J. G., Varamini, B., Hafner, A., Moaddel, R., Rolo, A. P., Coppari, R., Palmeira, C. M., de Cabo, R., Baur, J. A., and Sinclair, D. A. (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function, Cell Metab., 15, 675-690, doi: 10.1016/j.cmet.2012.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghosh, H. S., Reizis, B., and Robbins, P. D. (2011) SIRT1 associates with eIF2-alpha and regulates the cellular stress response, Sci. Rep., 1, 150, doi: 10.1038/srep00150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang, C., Curry, B. J., Brown, P. L., and Zemel, M. B. (2014) Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes, J. Nutr. Metab., 2014, 239750, doi: 10.1155/2014/239750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Masson, G. R. (2019) Towards a model of GCN2 activation, Biochem. Soc. Trans., 47, 1481-1488, doi: 10.1042/BST20190331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., and Gorman, A. M. (2016) The integrated stress response, EMBO Rep., 17, 1374-1395, doi: 10.15252/embr.201642195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, H., Jiang, X., Li, B., Yang, H. J., Miller, M., Yang, A., Dhar, A., and Pavletich, N. P. (2017) Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40, Nature, 552, 368-373, doi: 10.1038/nature25023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heard, J. J., Fong, V., Bathaie, S. Z., and Tamanoi, F. (2014) Recent progress in the study of the Rheb family GTPases, Cell. Signal., 26, 1950-1957, doi: 10.1016/j.cellsig.2014.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dibble, C. C., Elis, W., Menon, S., Qin, W., Klekota, J., Asara, J. M., Finan, P. M., Kwiatkowski, D. J., Murphy, L. O., and Manning, B. D. (2012) TBC1D7 is a third subunit of the TSC1–TSC2 complex upstream of mTORC1, Mol. Cell, 47, 535-546, doi: 10.1016/j.molcel.2012.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., and Sabatini, D. M. (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1, Science, 320, 1496-1501, doi: 10.1126/science.1157535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nada, S., Hondo, A., Kasai, A., Koike, M., Saito, K., Uchiyama, Y., and Okada, M. (2009) The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes, EMBO J., 28, 477-489, doi: 10.1038/emboj.2008.308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, C.-S., Jiang, B., Li, M., Zhu, M., Peng, Y., Zhang, Y.-L., Wu, Y.-Q., Li, T. Y., Liang, Y., Lu, Z., Lian, G., Liu, Q., Guo, H., Yin, Z., Ye, Z., Han, J., Wu, J.-W., Yin, H., Lin, S.-Y., and Lin, S.-C. (2014) The lysosomal v-ATPase–Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism, Cell Metab., 20, 526-540, doi: 10.1016/j.cmet.2014.06.014.

    Article  CAS  PubMed  Google Scholar 

  20. Bar-Peled, L., Schweitzer, L. D., Zoncu, R., and Sabatini, D. M. (2012) Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1, Cell, 150, 1196-1208, doi: 10.1016/j.cell.2012.07.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., and Sabatini, D. M. (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase, Science, 334, 678-683, doi: 10.1126/science.1207056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen, K., Huang, R. K., Brignole, E. J., Condon, K. J., Valenstein, M. L., Chantranupong, L., Bomaliyamu, A., Choe, A., Hong, C., Yu, Z., and Sabatini, D. M. (2018) Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes, Nature, 556, 64-69, doi: 10.1038/nature26158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, X., Orozco, J. M., Saxton, R. A., Condon, K. J., Liu, G. Y., Krawczyk, P. A., Scaria, S. M., Harper, J. W., Gygi, S. P., and Sabatini, D. M. (2017) SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway, Science, 358, 813-818, doi: 10.1126/science.aao3265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chantranupong, L., Wolfson, R. L., Orozco, J. M., Saxton, R. A., Scaria, S. M., Bar-Peled, L., Spooner, E., Isasa, M., Gygi, S. P., and Sabatini, D. M. (2014) The sestrins interact with GATOR2 to negatively regulate the amino acid sensing pathway upstream of mTORC1, Cell Rep., 9, 1-8, doi: 10.1016/j.celrep.2014.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolfson, R. L., Chantranupong, L., Saxton, R. A., Shen, K., Scaria, S. M., Cantor, J. R., and Sabatini, D. M. (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway, Science, 351, 43-48, doi: 10.1126/science.aab2674.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, H., An, S., Ro, S.-H., Teixeira, F., Park, G. J., Kim, C., Cho, C.-S., Kim, J.-S., Jakob, U., Lee, J. H., and Cho, U.-S. (2015) Janus-faced sestrin2 controls ROS and mTOR signalling through two separate functional domains, Nat. Commun., 6, 10025, doi: 10.1038/ncomms10025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chantranupong, L., Scaria, S. M., Saxton, R. A., Gygi, M. P., Shen, K., Wyant, G. A., Wang, T., Harper, J. W., Gygi, S. P., and Sabatini, D. M. (2016) The CASTOR proteins are arginine sensors for the mTORC1 pathway, Cell, 165, 153-164, doi: 10.1016/j.cell.2016.02.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gai, Z., Wang, Q., Yang, C., Wang, L., Deng, W., and Wu, G. (2016) Structural mechanism for the arginine sensing and regulation of CASTOR1 in the mTORC1 signaling pathway, Cell Discov., 2, 16051, doi: 10.1038/celldisc.2016.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen, K., Rogala, K. B., Chou, H.-T., Huang, R. K., Yu, Z., and Sabatini, D. M. (2019) Cryo-EM structure of the human FLCN–FNIP2–Rag–Ragulator complex, Cell, 179, 1319-1329, doi: 10.1016/j.cell.2019.10.036.

    Article  CAS  PubMed  Google Scholar 

  30. Meng, J., and Ferguson, S. M. (2018) GATOR1-dependent recruitment of FLCN–FNIP to lysosomes coordinates Rag GTPase heterodimer nucleotide status in response to amino acids, J. Cell Biol., 217, 2765-2776, doi: 10.1083/jcb.201712177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baba, M., Hong, S.-B., Sharma, N., Warren, M. B., Nickerson, M. L., Iwamatsu, A., Esposito, D., Gillette, W. K., Hopkins, R. F., Hartley, J. L., Furihata, M., Oishi, S., Zhen, W., Burke, T. R., Linehan, W. M., Schmidt, L. S., and Zbar, B. (2006) Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling, Proc. Natl. Acad. Sci. USA, 103, 15552-15557, doi: 10.1073/pnas.0603781103.

    Article  CAS  PubMed  Google Scholar 

  32. Starling, G. P., Yip, Y. Y., Sanger, A., Morton, P. E., Eden, E. R., and Dodding, M. P. (2016) Folliculin directs the formation of a Rab34–RILP complex to control the nutrient-dependent dynamic distribution of lysosomes, EMBO Rep., 17, 823-841, doi: 10.15252/embr.201541382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, M., Kim, J. H., Yoon, I., Lee, C., Sichani, M. F., Kang, J. S., Kang, J., Guo, M., Lee, K. Y., Han, G., Kim, S., and Han, J. M. (2018) Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway, Proc. Natl. Acad. Sci. USA, 115, 5279-5288, doi: 10.1073/pnas.1801287115.

    Article  CAS  Google Scholar 

  34. Mohan, N., Shen, Y., Dokmanovic, M., Endo, Y., Hirsch, D. S., and Wu, W. J. (2016) VPS34 regulates TSC1/TSC2 heterodimer to mediate RheB and mTORC1/S6K1 activation and cellular transformation, Oncotarget, 7, 52239-52254, doi: 10.18632/oncotarget.10469.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yoon, M.-S., Rosenberger, C. L., Wu, C., Truong, N., Sweedler, J. V., and Chen, J. (2015) Rapid mitogenic regulation of the mTORC1 inhibitor, DEPTOR, by phosphatidic acid, Mol. Cell, 58, 549-556, doi: 10.1016/j.molcel.2015.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoon, M.-S., Sun, Y., Arauz, E., Jiang, Y., and Chen, J. (2011) Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect, J. Biol. Chem., 286, 29568-29574, doi: 10.1074/jbc.M111.262816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dayam, R. M., Saric, A., Shilliday, R. E., and Botelho, R. J. (2015) The phosphoinositide-gated lysosomal Ca2+ channel, TRPML1, is required for phagosome maturation, Traffic, 16, 1010-1026, doi: 10.1111/tra.12303.

    Article  CAS  PubMed  Google Scholar 

  38. Duran, R. V., Oppliger, W., Robitaille, A. M., Heiserich, L., Skendaj, R., Gottlieb, E., and Hall, M. N. (2012) Glutaminolysis activates Rag-mTORC1 signaling, Mol. Cell, 47, 349-358, doi: 10.1016/j.molcel.2012.05.043.

    Article  CAS  PubMed  Google Scholar 

  39. Mony, V. K., Benjamin, S., and O’Rourke, E. J. (2016) A lysosome-centered view of nutrient homeostasis, Autophagy, 12, 619-631, doi: 10.1080/15548627.2016.1147671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lim, C.-Y., and Zoncu, R. (2016) The lysosome as a command-and-control center for cellular metabolism lysosomes as orchestrators of cellular metabolism, J. Cell Biol., 214, 653-664, doi: 10.1083/jcb.201607005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lamming, D. W., and Bar-Peled, L. (2019) Lysosome: the metabolic signaling hub, Traffic, 20, 27-38, doi: 10.1111/tra.12617.

    Article  CAS  PubMed  Google Scholar 

  42. Tyagi, R., Shahani, N., Gorgen, L., Ferretti, M., Pryor, W., Chen, P. Y., Swarnkar, S., Worley, P. F., Karbstein, K., Snyder, S. H., and Subramaniam, S. (2015) Rheb inhibits protein synthesis by activating the PERK-eIF2α signaling cascade, Cell Rep., 10, 684-693, doi: 10.1016/j.celrep.2015.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martina, J. A., and Puertollano, R. (2013) Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes, J. Cell Biol., 200, 475-491, doi: 10.1083/jcb.201209135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goberdhan, D. C. (2010) Intracellular amino acid sensing and mTORC1-regulated growth: new ways to block an old target? Curr. Opin. Investig. Drugs Lond. Engl., 11, 1360-1367.

    CAS  Google Scholar 

  45. Ogmundsdottir, M. H., Heublein, S., Kazi, S., Reynolds, B., Visvalingam, S. M., Shaw, M. K., and Goberdhan, D. C. I. (2012) Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes, PLoS One, 7, e36616, doi: 10.1371/journal.pone.0036616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zoncu, R., Sabatini, D. M., and Efeyan, A. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing, Nat. Rev. Mol. Cell Biol., 12, 21-35, doi: 10.1038/nrm3025.

    Article  CAS  PubMed  Google Scholar 

  47. Kailash, R., and Aylett, C. H. S. (2018) Signal integration in the (m)TORC1 growth pathway, Front. Biol., 13, 237-262, doi: 10.1007/s11515-018-1501-7.

    Article  CAS  Google Scholar 

  48. Lei, H.-T., Ma, J., Sanchez Martinez, S., and Gonen, T. (2018) Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state, Nat. Struct. Mol. Biol., 25, 522-527, doi: 10.1038/s41594-018-0072-2.

    Article  CAS  PubMed  Google Scholar 

  49. Cherfils, J. (2017) Encoding allostery in mTOR signaling: the structure of the Rag GTPase/Ragulator complex, Mol. Cell, 68, 823-824, doi: 10.1016/j.molcel.2017.11.027.

    Article  CAS  PubMed  Google Scholar 

  50. Mu, Z., Wang, L., Deng, W., Wang, J., and Wu, G. (2017) Structural insight into the Ragulator complex which anchors mTORC1 to the lysosomal membrane, Cell Discov., 3, 17049, doi: 10.1038/celldisc.2017.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yonehara, R., Nada, S., Nakai, T., Nakai, M., Kitamura, A., Ogawa, A., Nakatsumi, H., Nakayama, K. I., Li, S., Standley, D. M., Yamashita, E., Nakagawa, A., and Okada, M. (2017) Structural basis for the assembly of the Ragulator–Rag GTPase complex, Nat. Commun., 8, 1625, doi: 10.1038/s41467-017-01762-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, T., Wang, R., Wang, Z., Wang, X., Wang, F., and Ding, J. (2017) Structural basis for Ragulator functioning as a scaffold in membrane-anchoring of Rag GTPases and mTORC1, Nat. Commun., 8, 1394, doi: 10.1038/s41467-017-01567-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, Y., Li, S., Xu, X., Li, Y., Guan, K., Arnold, E., and Ding, J. (2005) Structural basis for the unique biological function of small GTPase RHEB, J. Biol. Chem., 280, 17093-17100, doi: 10.1074/jbc.M501253200.

    Article  CAS  PubMed  Google Scholar 

  54. Mazhab-Jafari, M. T., Rohou, A., Schmidt, C., Bueler, S. A., Benlekbir, S., Robinson, C. V., and Rubinstein, J. L. (2016) Atomic model for the membrane-embedded VO motor of a eukaryotic v-ATPase, Nature, 539, 118-122, doi: 10.1038/nature19828.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao, J., Benlekbir, S., and Rubinstein, J. L. (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic v-ATPase, Nature, 521, 241-245, doi: 10.1038/nature14365.

    Article  CAS  PubMed  Google Scholar 

  56. Aylett, C. H. S., Sauer, E., Imseng, S., Boehringer, D., Hall, M. N., Ban, N., and Maier, T. (2016) Architecture of human mTOR complex 1, Science, 351, 48-52, doi: 10.1126/science.aaa3870.

    Article  CAS  PubMed  Google Scholar 

  57. Yang, H., Wang, J., Liu, M., Chen, X., Huang, M., Tan, D., Dong, M.-Q., Wong, C. C. L., Wang, J., Xu, Y., and Wang, H.-W. (2016) 4.4 Å resolution cryo-EM structure of human mTOR complex 1, Protein Cell, 7, 878-887, doi: 10.1007/s13238-016-0346-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Basso, A. D., Mirza, A., Liu, G., Long, B. J., Bishop, W. R., and Kirschmeier, P. (2005) The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity, J. Biol. Chem., 280, 31101-31108, doi: 10.1074/jbc.M503763200.

    Article  CAS  PubMed  Google Scholar 

  59. Rogala, K. B., Gu, X., Kedir, J. F., Abu-Remaileh, M., Bianchi, L. F., Bottino, A. M. S., Dueholm, R., Niehaus, A., Overwijn, D., Fils, A.-C. P., Zhou, S. X., Leary, D., Laqtom, N. N., Brignole, E. J., and Sabatini, D. M. (2019) Structural basis for the docking of mTORC1 on the lysosomal surface, Science, 366, 468-475, doi: 10.1126/science.aay0166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peng, W., and Jewell, J. L. (2020) Amino acid sensing: architecture of mTORC1 on the lysosome surface, Curr. Biol., 30, 89-91, doi: 10.1016/j.cub.2019.11.087.

    Article  CAS  Google Scholar 

  61. Fan, S.-J., Snell, C., Turley, H., Li, J.-L., McCormick, R., Perera, S. M. W., Heublein, S., Kazi, S., Azad, A., Wilson, C., Harris, A. L., and Goberdhan, D. C. I. (2016) PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer, Oncogene, 35, 3004-3015, doi: 10.1038/onc.2015.363.

    Article  CAS  PubMed  Google Scholar 

  62. Pedroso, J. A. B., Zampieri, T. T., and Donato, J. (2015) Reviewing the effects of L-leucine supplementation in the regulation of food intake, energy balance, and glucose homeostasis, Nutrients, 7, 3914-3937, doi: 10.3390/nu7053914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H., Hild, M., Kung, C., Wilson, C., Myer, V. E., MacKeigan, J. P., Porter, J. A., Wang, Y. K., Cantley, L. C., Finan, P. M., and Murphy, L. O. (2009) Bidirectional transport of amino acids regulates mTOR and autophagy, Cell, 136, 521-534, doi: 10.1016/j.cell.2008.11.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wyant, G. A., Abu-Remaileh, M., Wolfson, R. L., Chen, W. W., Freinkman, E., Danai, L. V., Vander Heiden, M. G., and Sabatini, D. M. (2017) mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient, Cell, 171, 642-654, doi: 10.1016/j.cell.2017.09.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kilberg, M. S., Shan, J., and Su, N. (2009) ATF4-dependent transcription mediates signaling of amino acid limitation, Trends Endocrinol. Metab., 20, 436-443, doi: 10.1016/j.tem.2009.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lawrence, R. E., Cho, K. F., Rappold, R., Thrun, A., Tofaute, M., Kim, D. J., Moldavski, O., Hurley, J. H., and Zoncu, R. (2018) A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase–Ragulator lysosomal scaffold, Nat. Cell Biol., 20, 1052-1063, doi: 10.1038/s41556-018-0148-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wong, P.-M., Feng, Y., Wang, J., Shi, R., and Jiang, X. (2015) Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A, Nat. Commun., 6, 8048, doi: 10.1038/ncomms9048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shen, K., Choe, A., and Sabatini, D. M. (2017) Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to respond rapidly to amino acid availability, Mol. Cell, 68, 552-565, doi: 10.1016/j.molcel.2017.09.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thomas, H. E., Zhang, Y., Stefely, J. A., Veiga, S. R., Thomas, G., Kozma, S. C., and Mercer, C. A. (2018) Mitochondrial complex I activity is required for maximal autophagy, Cell Rep., 24, 2417, doi: 10.1016/j.celrep.2018.07.101.

    Article  CAS  Google Scholar 

  70. Adachi, Y., De Sousa-Coelho, A. L., Harata, I., Aoun, C., Weimer, S., Shi, X., Gonzalez Herrera, K. N., Takahashi, H., Doherty, C., Noguchi, Y., Goodyear, L. J., Haigis, M. C., Gerszten, R. E., and Patti, M.-E. (2018) L-Alanine activates hepatic AMP-activated protein kinase and modulates systemic glucose metabolism, Mol. Metab., 17, 61-70, doi: 10.1016/j.molmet.2018.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kimball, S. R., Gordon, B. S., Moyer, J. E., Dennis, M. D., and Jefferson, L. S. (2016) Leucine induced dephosphorylation of sestrin2 promotes mTORC1 activation, Cell. Signal., 28, 896-906, doi: 10.1016/j.cellsig.2016.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Parmigiani, A., Nourbakhsh, A., Ding, B., Wang, W., Kim, Y. C., Akopiants, K., Guan, K.-L., Karin, M., and Budanov, A. V. (2014) Sestrins inhibit mTORC1 kinase activation through the GATOR complex, Cell Rep., 9, 1281-1291, doi: 10.1016/j.celrep.2014.10.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wauson, E. M., Zaganjor, E., Lee, A.-Y., Guerra, M. L., Ghosh, A. B., Bookout, A. L., Chambers, C. P., Jivan, A., McGlynn, K., Hutchison, M. R., Deberardinis, R. J., and Cobb, M. H. (2012) The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy, Mol. Cell, 47, 851-862, doi: 10.1016/j.molcel.2012.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pezze, P. D., Ruf, S., Sonntag, A. G., Langelaar-Makkinje, M., Hall, P., Heberle, A. M., Navas, P. R., van Eunen, K., Tolle, R. C., Schwarz, J. J., Wiese, H., Warscheid, B., Deitersen, J., Stork, B., Faßler, E., Schauble, S., Hahn, U., Horvatovich, P., Shanley, D. P., and Thedieck, K. (2016) A systems study reveals concurrent activation of AMPK and mTOR by amino acids, Nat. Commun., 7, doi: 10.1038/ncomms13254.

    Google Scholar 

  75. Krall, A. S., Xu, S., Graeber, T. G., Braas, D., and Christofk, H. R. (2016) Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor, Nat. Commun., 7, 11457, doi: 10.1038/ncomms11457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dyachok, J., Earnest, S., Iturraran, E. N., Cobb, M. H., and Ross, E. M. (2016) Amino acids regulate mTORC1 by an obligate two-step mechanism, J. Biol. Chem., 291, 22414-22426, doi: 10.1074/jbc.M116.732511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ruderman, N. B., Xu, X. J., Nelson, L., Cacicedo, J. M., Saha, A. K., Lan, F., and Ido, Y. (2010) AMPK and SIRT1: a long-standing partnership? Am. J. Physiol. Endocrinol. Metab., 298, 751-760, doi: 10.1152/ajpendo.00745.2009.

    Article  CAS  Google Scholar 

  78. Kim, J. H., Lee, C., Lee, M., Wang, H., Kim, K., Park, S. J., Yoon, I., Jang, J., Zhao, H., Kim, H. K., Kwon, N. H., Jeong, S. J., Yoo, H. C., Kim, J. H., Yang, J. S., Lee, M. Y., Lee, C. W., Yun, J., Oh, S. J., Kang, J. S., Martinis, S. A., Hwang, K. Y., Guo, M., Han, G., Han, J. M., and Kim, S. (2017) Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and Rag D interaction, Nat. Commun., 8, 732, doi: 10.1038/s41467-017-00785-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yoon, M.-S., Son, K., Arauz, E., Han, J. M., Kim, S., and Chen, J. (2016) Leucyl-tRNA synthetase activates Vps34 in amino acid-sensing mTORC1 signaling, Cell Rep., 16, 1510-1517, doi: 10.1016/j.celrep.2016.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wolfson, R. L., Chantranupong, L., Wyant, G. A., Gu, X., Orozco, J. M., Shen, K., Condon, K. J., Petri, S., Kedir, J., Scaria, S. M., Abu-Remaileh, M., Frankel, W. N., and Sabatini, D. M. (2017) KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1, Nature, 543, 438-442, doi: 10.1038/nature21423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tomita, T., Kuzuyama, T., and Nishiyama, M. (2011) Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase, J. Biol. Chem., 286, 37406-37413, doi: 10.1074/jbc.M111.260265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duran, R. V., MacKenzie, E. D., Boulahbel, H., Frezza, C., Heiserich, L., Tardito, S., Bussolati, O., Rocha, S., Hall, M. N., and Gottlieb, E. (2013) HIF-independent role of prolyl hydroxylases in the cellular response to amino acids, Oncogene, 32, 4549-4556, doi: 10.1038/onc.2012.465.

    Article  CAS  PubMed  Google Scholar 

  83. Milkereit, R., Persaud, A., Vanoaica, L., Guetg, A., Verrey, F., and Rotin, D. (2015) LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation, Nat. Commun., 6, 7250, doi: 10.1038/ncomms8250.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shang, P., Valapala, M., Grebe, R., Hose, S., Ghosh, S., Bhutto, I. A., Handa, J. T., Lutty, G. A., Lu, L., Wan, J., Qian, J., Sergeev, Y., Puertollano, R., Zigler, J. S., Xu, G.-T., and Sinha, D. (2017) The amino acid transporter SLC36A4 regulates the amino acid pool in retinal pigmented epithelial cells and mediates the mechanistic target of rapamycin, complex 1 signaling, Aging Cell, 16, 349-359, doi: 10.1111/acel.12561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Andrzejewska, Z., Nevo, N., Thomas, L., Chhuon, C., Bailleux, A., Chauvet, V., Courtoy, P. J., Chol, M., Guerrera, I. C., and Antignac, C. (2016) Cystinosin is a component of the vacuolar H+-ATPase–Ragulator–Rag complex controlling mammalian target of rapamycin complex 1 signaling, J. Am. Soc. Nephrol., 27, 1678-1688, doi: 10.1681/ASN.2014090937.

    Article  CAS  PubMed  Google Scholar 

  86. Shen, K., and Sabatini, D. M. (2018) Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms, Proc. Natl. Acad. Sci. USA, 115, 9545-9550, doi: 10.1073/pnas.1811727115.

    Article  CAS  PubMed  Google Scholar 

  87. Lee, S. W., Cho, B. H., Park, S. G., and Kim, S. (2004) Aminoacyl-tRNA synthetase complexes: beyond translation, J. Cell Sci., 117, 3725-3734, doi: 10.1242/jcs.01342.

    Article  CAS  PubMed  Google Scholar 

  88. Fawal, M.-A., Brandt, M., and Djouder, N. (2015) MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation, Dev. Cell, 33, 67-81, doi: 10.1016/j.devcel.2015.02.010.

    Article  CAS  PubMed  Google Scholar 

  89. Carroll, B., Maetzel, D., Maddocks, O. D., Otten, G., Ratcliff, M., Smith, G. R., Dunlop, E. A., Passos, J. F., Davies, O. R., Jaenisch, R., Tee, A. R., Sarkar, S., and Korolchuk, V. I. (2016) Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity, eLife, 5, e11058, doi: 10.7554/eLife.11058.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jewell, J. L., Kim, Y. C., Russell, R. C., Yu, F.-X., Park, H. W., Plouffe, S. W., Tagliabracci, V. S., and Guan, K.-L. (2015) Differential regulation of mTORC1 by leucine and glutamine, Science, 347, 194-198, doi: 10.1126/science.1259472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Laxman, S., Sutter, B. M., and Tu, B. P. (2014) Methionine is a signal of amino acid sufficiency that inhibits autophagy through the methylation of PP2A, Autophagy, 10, 386-387, doi: 10.4161/auto.27485.

    Article  CAS  PubMed  Google Scholar 

  92. Sutter, B. M., Wu, X., Laxman, S., and Tu, B. P. (2013) Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A, Cell, 154, 403-415, doi: 10.1016/j.cell.2013.06.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, L., Wang, K., Long, A., Jia, L., Zhang, Y., Deng, H., Li, Y., Han, J., and Wang, Y. (2017) Fasting-induced hormonal regulation of lysosomal function, Cell Res., 27, 748-763, doi: 10.1038/cr.2017.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuan, W., Guo, S., Gao, J., Zhong, M., Yan, G., Wu, W., Chao, Y., and Jiang, Y. (2017) General control nonderepressible 2 (GCN2) kinase inhibits target of rapamycin complex 1 in response to amino acid starvation in Saccharomyces cerevisiae, J. Biol. Chem., 292, 2660-2669, doi: 10.1074/jbc.M116.772194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Averous, J., Lambert-Langlais, S., Mesclon, F., Carraro, V., Parry, L., Jousse, C., Bruhat, A., Maurin, A.-C., Pierre, P., Proud, C. G., and Fafournoux, P. (2016) GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism, Sci. Rep., 6, 27698, doi: 10.1038/srep27698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Floyd, J. C., Fajans, S. S., Pek, S., Thiffault, C. A., Knopf, R. F., and Conn, J. W. (1970) Synergistic effect of certain amino acid pairs upon insulin secretion in man, Diabetes, 19, 102-108, doi: 10.2337/diab.19.2.102.

    Article  CAS  PubMed  Google Scholar 

  97. Choi, Y. H., Fletcher, P. J., and Anderson, G. H. (2001) Extracellular amino acid profiles in the paraventricular nucleus of the rat hypothalamus are influenced by diet composition, Brain Res., 892, 320-328, doi: 10.1016/s0006-8993(00)03267-4.

    Article  CAS  PubMed  Google Scholar 

  98. Su, Y., Lam, T. K. T., He, W., Pocai, A., Bryan, J., Aguilar-Bryan, L., and Gutierrez-Juarez, R. (2012) Hypothalamic leucine metabolism regulates liver glucose production, Diabetes, 61, 85-93, doi: 10.2337/db11-0857.

    Article  CAS  PubMed  Google Scholar 

  99. Xiao, Y., Deng, Y., Yuan, F., Xia, T., Liu, H., Li, Z., Liu, Z., Ying, H., Liu, Y., Zhai, Q., Chen, S., and Guo, F. (2017) ATF4/ATG5 signaling in hypothalamic proopiomelanocortin neurons regulates fat mass via affecting energy expenditure, Diabetes, 66, 1146-1158, doi: 10.2337/db16-1546.

    Article  CAS  PubMed  Google Scholar 

  100. Delgoffe, G. M., Pollizzi, K. N., Waickman, A. T., Heikamp, E., Meyers, D. J., Horton, M. R., Xiao, B., Worley, P. F., and Powell, J. D. (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2, Nat. Immunol., 12, 295-303, doi: 10.1038/ni.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bao, W., Wang, Y., Fu, Y., Jia, X., Li, J., Vangan, N., Bao, L., Hao, H., and Wang, Z. (2015) mTORC1 regulates flagellin-induced inflammatory response in macrophages, PLoS One, 10, e0125910, doi: 10.1371/journal.pone.0125910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Decker, B., and Pumiglia, K. (2018) mTORc1 activity is necessary and sufficient for phosphorylation of eNOS S1177, Physiol. Rep., 6, e13733, doi: 10.14814/phy2.13733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nesterov, S. V., Yaguzhinsky, L. S., Podoprigora, G. I., and Nartsissov, Y. R. (2018) Autocatalytic cycle in the pathogenesis of diabetes mellitus: biochemical and pathophysiological aspects of metabolic therapy with natural amino acids on the example of glycine, Diabetes Mellit., 21, 283-292, doi: 10.14341/DM9529.

    Article  Google Scholar 

  104. Podoprigora, G. I., and Nartsissov, Y. R. (2009) Effect of glycine on the microcirculation in rat mesenteric vessels, Bull. Exp. Biol. Med., 147, 308-311, doi: 10.1007/s10517-009-0498-y.

    Article  CAS  PubMed  Google Scholar 

  105. Podoprigora, G. I., Nartsissov, Y. R., and Aleksandrov, P. N. (2005) Effect of glycine on microcirculation in pial vessels of rat brain, Bull. Exp. Biol. Med., 139, 675-677, doi: 10.1007/s10517-005-0375-2.

    Article  CAS  PubMed  Google Scholar 

  106. Podoprigora, G. I., Blagosklonov, O., Angoue, O., Boulahdour, H., and Nartsissov, Y. R. (2012) Assessment of microcirculatory effects of glycine by intravital microscopy in rats, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2012, 2651-2654, doi: 10.1109/EMBC.2012.6346509.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Institute of Cytochemistry and Molecular Pharmacology and the Russian Foundation for Basic Research (project No. 19-04-00835/19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Yaguzhinsky.

Ethics declarations

This article does not contain studies with human participants or animals performed by any of the authors. The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, S., Yaguzhinsky, L., Podoprigora, G. et al. Amino Acids as Regulators of Cell Metabolism. Biochemistry Moscow 85, 393–408 (2020). https://doi.org/10.1134/S000629792004001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792004001X

Keywords

Navigation