Characterization of Tobacco Mosaic Virus Virions and Repolymerized Coat Protein Aggregates in Solution by Small-Angle X-Ray Scattering

Abstract

The structure of tobacco mosaic virus (TMV) virions and stacked disk aggregates of TMV coat protein (CP) in solution was analyzed by synchrotron-based small-angle X-ray scattering (SAXS) and negative contrast transmission electron microscopy (TEM). TMV CP aggregates had a unique stability but did not have helical symmetry. According to the TEM data, they were stacked disks associated into transversely striated rod-shaped structures 300 to 800 Å long. According to modeling based on the crystallographic model of the 4-layer TMV CP aggregate (PDB: 1EI7), the stacked disks represented hollow cylinders. The calculated SAXS pattern for the disks was compared to the experimental one over the entire measured range. The best correlation with the SAXS data was found for the model with the repeating central pair of discs; the SAXS curves for the stacked disks were virtually identical irrespectively of the protein isolation method. The positions of maxima on the scatter curves could be used as characteristic features of the studied samples; some of the peaks were assigned to the existing elements of the quaternary structure (periodicity of aggregate structure, virion helix pitch). Low-resolution structural data for the repolymerized TMV CP aggregates in solution under conditions similar to natural were produced for the first time. Analysis of such nano-size objects is essential for their application in biomedicine and biotechnology.

This is a preview of subscription content, log in to check access.

Abbreviations

CP:

coat protein

SAXS:

small-angle X-ray scattering

TEM:

transmission electron microscopy

TMV:

tobacco mosaic virus

References

  1. 1.

    Caspar, D. L., and Namba, K. (1990) Switching in the self-assembly of tobacco mosaic virus, Adv. Biophys., 26, 157–185; doi: https://doi.org/10.1016/0065-227x(90)90011-h.

    CAS  Article  Google Scholar 

  2. 2.

    Kendall, A., McDonald, M., and Stubbs, G. (2007) Precise determination of the helical repeat of tobacco mosaic virus, Virology, 369, 226–227; doi: https://doi.org/10.1016/j.virol.2007.08.013.

    CAS  Article  Google Scholar 

  3. 3.

    Butler, P. J. (1999) Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed, Philos. Trans. R. Soc. Lond. B Biol. Sci., 354, 537–550; doi: https://doi.org/10.1098/rstb.1999.0405.

    CAS  Article  Google Scholar 

  4. 4.

    Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R., and Klug, A. (1978) Protein disk of tobacco mosaic virus at 2.8 A resolution showing the interactions within and between subunits, Nature, 276, 362–368; doi: https://doi.org/10.1038/276362a0.

    CAS  Article  Google Scholar 

  5. 5.

    Klug, A. (1999) The tobacco mosaic virus particle: structure and assembly, Philos. Trans. R. Soc. Lond. B Biol. Sci., 354, 531–535.

    CAS  Article  Google Scholar 

  6. 6.

    Butler, P. J. (1984) The current picture of the structure and assembly of tobacco mosaic virus, J. Gen. Virol., 65 (Pt. 2), 253–279; doi: https://doi.org/10.1099/0022-1317-65-2-253

    CAS  Article  Google Scholar 

  7. 7.

    Franklin, R. E., and Commoner, B. (1955) Abnormal protein associated with tobacco mosaic virus; X-ray diffraction by an abnormal protein (B8) associated with tobacco mosaic virus, Nature, 175, 1076–1077; doi: https://doi.org/10.1038/1751076a0.

    CAS  Article  Google Scholar 

  8. 8.

    Unwin, P. N., and Klug, A. (1974) Electron microscopy of the stacked disk aggregate of tobacco mosaic virus protein. I. Three-dimensional image reconstruction, J. Mol. Biol., 87, 641–656; doi: https://doi.org/10.1016/0022-2836(74)90075-8.

    CAS  Article  Google Scholar 

  9. 9.

    Dore, I., Ruhlmann, C., Oudet, P., Cahoon, M., Caspar, D. L., and Van Regenmortel, M. H. (1990) Polarity of binding of monoclonal antibodies to tobacco mosaic virus rods and stacked disks, Virology, 176, 25–29; doi: https://doi.org/10.1016/0042-6822(90)90226-h.

    CAS  Article  Google Scholar 

  10. 10.

    Diaz-Avalos, R., and Caspar, D. L. (1998) Structure of the stacked disk aggregate of tobacco mosaic virus protein, Biophys. J., 74, 595–603; doi: https://doi.org/10.1016/S0006-3495(98)77818-X.

    CAS  Article  Google Scholar 

  11. 11.

    Diaz-Avalos, R., and Caspar, D. L. (2000) Hyperstable stacked-disk structure of tobacco mosaic virus protein: electron cryomicroscopy image reconstruction related to atomic models, J. Mol. Biol., 297, 67–72; doi: https://doi.org/10.1006/jmbi.1999.3481.

    CAS  Article  Google Scholar 

  12. 12.

    Bhyravbhatla, B., Watowich, S. J., and Caspar, D. L. (1998) Refined atomic model of the four-layer aggregate of the tobacco mosaic virus coat protein at 2.4-Aresolution, Biophys. J., 74, 604–615; doi: https://doi.org/10.1016/S0006-3495(98)77819-1.

    CAS  Article  Google Scholar 

  13. 13.

    Raghavendra, K., Adams, M. L., and Schuster, T. M. (1985) Tobacco mosaic virus protein aggregates in solution: structural comparison of 20S aggregates with those near conditions for disk crystallization, Biochemistry, 24, 3298–3304; doi: https://doi.org/10.1021/bi00334a034.

    CAS  Article  Google Scholar 

  14. 14.

    Raghavendra, K., Salunke, D. M., Caspar, D. L., and Schuster, T. M. (1986) Disk aggregates of tobacco mosaic virus protein in solution: electron microscopy observations, Biochemistry, 25, 6276–6279; doi: https://doi.org/10.1021/bi00368a066.

    CAS  Article  Google Scholar 

  15. 15.

    Ksenofontov, A. L., Dobrov, E. N., Fedorova, N. V., Arutyunyan, A. M., Golanikov, A. E., Jarvekulg, L., and Shtykova, E. V. (2018) Structure of potato virus A coat protein particles and their dissociation, Mol. Biol., 52, 913–921; doi: https://doi.org/10.1134/S0026893318060109.

    CAS  Article  Google Scholar 

  16. 16.

    Ksenofontov, A. L., Dobrov, E. N., Fedorova, N. V., Serebryakova, M. V., Prusov, A. N., Baratova, L. A., Paalme, V., Jarvekulg, L., and Shtykova, E. V. (2018) Isolated potato virus A coat protein possesses unusual properties and forms different short virus-like particles, J. Biomol. Struct. Dyn., 36, 1728–1738; doi: https://doi.org/10.1080/07391102.2017.1333457.

    CAS  Article  Google Scholar 

  17. 17.

    Goodman, R. M. (1975) Reconstitution of potato virus X in vitro. I. Properties of the dissociated protein structural sub-units, Virology, 68, 287–298; doi: https://doi.org/10.1016/0042-6822(75)90272-x.

    CAS  Article  Google Scholar 

  18. 18.

    Fraenkel-Conrat, H. (1957) Degradation of tobacco mosaic virus with acetic acid, Virology, 4, 1–4; doi: https://doi.org/10.1016/0042-6822(57)90038-7.

    CAS  Article  Google Scholar 

  19. 19.

    Ksenofontov, A. L., Kozlovskii, V. S., Kordiukova, L. V., Radiukhin, V. A., Timofeeva, A. V., and Dobrov, E. N. (2006) Determination of concentration and aggregate size in influenza virus preparations from true UV absorption spectra, Mol. Biol., 40, 152–158.

    CAS  Article  Google Scholar 

  20. 20.

    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685; doi: https://doi.org/10.1038/227680a0.

    CAS  Article  Google Scholar 

  21. 21.

    Blanchet, C. E., Spilotros, A., Schwemmer, F., Graewert, M. A., Kikhney, A., Jeffries, C. M., Franke, D., Mark, D., Zengerle, R., Cipriani, F., Fiedler, S., Roessle, M., and Svergun, D. I. (2015) Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY), J. Appl. Crystallogr., 48, 431–443; doi: https://doi.org/10.1107/S160057671500254X.

    CAS  Article  Google Scholar 

  22. 22.

    Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J., and Svergun, D. I. (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis, J. Appl. Crystallogr., 36, 1277–1282, doi: https://doi.org/10.1107/S0021889803012779.

    CAS  Article  Google Scholar 

  23. 23.

    Konarev, P. V., Petoukhov, M. V., and Svergun, D. I. (2001) MASSHA — a graphics system for rigid-body modelling of macromolecular complexes against solution scattering data, J. Appl. Crystallogr., 34, 527–532; doi: https://doi.org/10.1107/S0021889801006100.

    CAS  Article  Google Scholar 

  24. 24.

    Svergun, D., Barberato, C., and Koch, M. H. (1995) CRYSOL — a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Crystallogr., 28, 768–773; doi: https://doi.org/10.1107/S0021889895007047.

    CAS  Article  Google Scholar 

  25. 25.

    Durham, A. C., Finch, J. T., and Klug, A. (1971) States of aggregation of tobacco mosaic virus protein, Nat. New Biol., 229, 37–42; doi: https://doi.org/10.1038/newbio229037a0.

    CAS  Article  Google Scholar 

  26. 26.

    Sachse, C., Chen, J. Z., Coureux, P. D., Stroupe, M. E., Fandrich, M., and Grigorieff, N. (2007) High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus, J. Mol. Biol., 371, 812–835; doi: https://doi.org/10.1016/j.jmb.2007.05.088.

    CAS  Article  Google Scholar 

  27. 27.

    Blanchet, C. E., and Svergun, D. I. (2013) Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution, Annu. Rev. Phys. Chem., 64, 37–54; doi: https://doi.org/10.1146/annurev-physchem-040412-110132.

    CAS  Article  Google Scholar 

  28. 28.

    Shtykova, E. V., Baratova, L. A., Fedorova, N. V., Radyukhin, V. A., Ksenofontov, A. L., Volkov, V. V., Shishkov, A. V., Dolgov, A. A., Shilova, L. A., Batishchev, O. V., Jeffries, C. M., and Svergun, D. I. (2013) Structural analysis of influenza A virus matrix protein M1 and its self-assemblies at low pH, PLoS One, 8, e82431; doi: https://doi.org/10.1371/journal.pone.0082431

    Article  Google Scholar 

  29. 29.

    Costa, L., Andriatis, A., Brennich, M., Teulon, J. M., Chen, S.W., Pellequer, J. L., and Round, A. (2016) Combined small angle X-ray solution scattering with atomic force microscopy for characterizing radiation damage on biological macromolecules, BMC Struct. Biol., 16, 18; doi: https://doi.org/10.1186/s12900-016-0068-2.

    Article  Google Scholar 

  30. 30.

    Spinozzi, F., Ferrero, C., Ortore, M. G., Antolinos, A. D., and Mariani, P. (2014) GENFIT: software for the analysis of small-angle X-ray and neutron scattering data of macromolecules in solution, J. Appl. Crystallogr., 47, 1132–1139; doi: https://doi.org/10.1107/S1600576714005147.

    CAS  Article  Google Scholar 

  31. 31.

    Hiragi, Y., Inoue, H., Sano, Y., Kajiwara, K., Ueki, T., Kataoka, M., Tagawa, H., Izumi, Y., Muroga, Y., and Amemiya, Y. (1988) Temperature dependence of the structure of aggregates of tobacco mosaic virus protein at pH 7.2. Static synchrotron small-angle X-ray scattering, J. Mol. Biol., 204, 129–140; doi: https://doi.org/10.1016/0022-2836(88)90604-3.

    CAS  Article  Google Scholar 

  32. 32.

    Sano, Y., Inoue, H., and Hiragi, Y. (1999) Differences of reconstitution process between tobacco mosaic virus and cucumber green mottle mosaic virus by synchrotron small angle X-ray scattering using low-temperature quenching, J. Protein Chem., 18, 801–805; doi: https://doi.org/10.1023/a:1020689720082.

    CAS  Article  Google Scholar 

  33. 33.

    Potschka, M., Koch, M. H., Adams, M. L., and Schuster, T. M. (1988) Time-resolved solution X-ray scattering of tobacco mosaic virus coat protein: kinetics and structure of intermediates, Biochemistry, 27, 8481–8491; doi: https://doi.org/10.1021/bi00422a028.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. L. Ksenofontov.

Additional information

Russian Text © The Author(s), 2020, published in Biokhimiya, 2020, Vol. 85, No. 3, pp. 360–368.

Funding

This work supported by the Russian Foundation for Basic Research (grant 18-04-00525a) and Ministry of Science and Higher Education of the Russian Federation (State Budget Project “Crystallography and Photonics”, SAXS experiments).

Conflict of interest

The authors declare no conflict of interest in financial or any other sphere.

Ethical approval

This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ksenofontov, A.L., Petoukhov, M.V., Prusov, A.N. et al. Characterization of Tobacco Mosaic Virus Virions and Repolymerized Coat Protein Aggregates in Solution by Small-Angle X-Ray Scattering. Biochemistry Moscow 85, 310–317 (2020). https://doi.org/10.1134/S0006297920030062

Download citation

Keywords

  • TMV
  • coat protein
  • stacked disk aggregates
  • virions
  • small-angle X-ray scattering