Skip to main content
Log in

Lipid Rafts in Exosome Biogenesis

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Exosomes (secreted extracellular vesicles formed in the intracellular vesicular transport system) play a crucial role in distant cell–cell communication. Exosomes transfer active forms of various biomolecules; the molecular composition of the exosomal cargo is a result of targeted selection and depends on the type of producer cells. The mechanisms underlying exosome formation and cargo selection are poorly understood. It is believed that there are several pathways for exosome biogenesis, although the questions about their independence and simultaneous coexistence in the cell still remain open. The least studied topic is the recently discovered mechanism of exosome formation associated with lipid rafts, or membrane lipid microdomains. Here, we present modern concepts and basic hypotheses on the mechanisms of exosome biogenesis and secretion and summarize current data on the involvement of lipid rafts and their constituent molecules in these processes. Special attention is paid to the analysis of possible role in the exosome formation of raft-forming proteins of the SPFH family, components of planar rafts, and caveolin, the main component of caveolae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

ESCRT:

endosomal sorting complex required for transport

EV:

extracellular vesicle

GA:

Golgi apparatus

ILV:

intraluminal vesicle

LR:

lipid raft

MVE:

multivesicular endosome

PM:

plasma membrane

RFP:

raft-forming proteins

SPFH (proteins):

stomatin, pro-hibitin, flotillin, and HflK/C anmis

References

  1. Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., and Turbide, C. (1987) Vesicle formation during reticulo-cyte maturation. Association of plasma membrane activities with released vesicles (exosomes), J. Biol. Chem., 262, 9412–9420, doi: 10.1016/j.biocel.2011.10.005.

    CAS  PubMed  Google Scholar 

  2. Trams, E. G., Lauter, C. J., Norman Salem, J., and Heine, U. (1981) Exfoliation of membrane ecto-enzymes in the form of microvesicles, BBA Biomembranes, 645, 63–70, doi: 10.1016/0005-2736(81)90512-5.

    Article  CAS  PubMed  Google Scholar 

  3. Harding, C., Heuser, J., and Stahl, P. (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes, J. Cell Biol., 97, 329–339, doi: 10.1083/jcb.97.2.329.

    Article  CAS  PubMed  Google Scholar 

  4. Yu, S., Cao, H., Shen, B., and Feng, J. (2015) Tumorderived exosomes in cancer progression and treatment failure, Oncotarget, 6, 37151–37168, doi: 10.18632/oncotarget. 6022.

    PubMed  PubMed Central  Google Scholar 

  5. Soung, Y. H., Nguyen, T., Cao, H., Lee, J., and Chung, J. (2015) Emerging roles of exosomes in cancer invasion and metastasis, BMB Reports, 49, 18–25, doi: 10.5483/BMBRep.2016.49.1.239.

    Article  CAS  Google Scholar 

  6. Chevkina, E., Shcherbakov, A., Zhuravskaya, A., Semina, S., Komel’kov, A., and Krasil’nikov, M. (2016) Exosomes and transfer of (epi)genetic information by cancer cells, Uspekhi Mol. Onkol., 2, 8–20.

    Google Scholar 

  7. Willms, E., Johansson, H. J., Mager, I., Lee, Y., Blomberg, K. E. M., Sadik, M., Alaarg, A., Smith, C. I. E., Lehtio, J., El Andaloussi, S., Wood, M. J. A., and Vader, P. (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties, Sci. Rep., 6, 22519, doi: 10.1038/srep22519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., Depoortere, F., Coomans, C., Vermeiren, E., Zimmermann, P., and David, G. (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes, Nat. Cell Biol., 14, 677–685, doi: 10.1038/ ncb2502.

    Article  CAS  PubMed  Google Scholar 

  9. Villarroya-Beltri, C., Baixauli, F., Gutierrez-Vazquez, C., Sanchez-Madrid, F., and Mittelbrunn, M. (2014) Sorting it out: regulation of exosome loading, Semin. Cancer Biol., 28, 3–13, doi: 10.1016/j.semcancer.2014.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kowal, J., Tkach, M., and Thery, C. (2014) Biogenesis and secretion of exosomes, Curr. Opin. Cell Biol., 29, 116–125, doi: 10.1016/j.ceb.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  11. Tan, S. S., Yin, Y., Lee, T., Lai, R. C., Yeo, R. W. Y., Zhang, B., Choo, A., and Lim, S. K. (2013) Therapeutic MSC exosomes are derived from lipid raft microdomains in the plasma membrane, J. Extr. Vesicles, 2, doi: 10.3402/jev.v2i0.22614.

    Article  CAS  Google Scholar 

  12. Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., and Simons, M. (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science (N.Y.), 319, 1244–1247, doi: 10.1126/science.1153124.

    Article  CAS  Google Scholar 

  13. Stuffers, S., Sem Wegner, C., Stenmark, H., and Brech, A. (2009) Multivesicular endosome biogenesis in the absence of ESCRTs, Traffic, 10, 925–937, doi: 10.1111/j.1600-0854.2009.00920.x.

    Article  CAS  PubMed  Google Scholar 

  14. Van Niel, G., Charrin, S., Simoes, S., Romao, M., Rochin, L., Saftig, P., Marks, M. S., Rubinstein, E., and Raposo, G. (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis, Develop. Cell, 21, 708–721, doi: 10.1016/j.devcel. 2011.08.019.

    Article  CAS  Google Scholar 

  15. Phuyal, S., Hessvik, N. P., Skotland, T., Sandvig, K., and Llorente, A. (2014) Regulation of exosome release by gly-cosphingolipids and flotillins, FEBS J., 281, 2214–2227, doi: 10.1111/febs.12775.

    Article  CAS  PubMed  Google Scholar 

  16. Singer, S. J., and Nicolson, G. L. (1972) The fluid mosaic model of the structure of cell membranes, Science, 175, 720–731, doi: 10.1126/science.175.4023.720.

    Article  CAS  PubMed  Google Scholar 

  17. Sezgin, E., Levental, I., Mayor, S., and Eggeling, C. (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts, Nature Rev. Mol. Cell Biol., 18, 361–374, doi: 10.1038/nrm.2017.16.

    Article  CAS  Google Scholar 

  18. Lingwood, D., and Simons, K. (2010) Lipid rafts as a membrane-organizing principle, Science, 327, 46–50, doi: 10.1126/science.1174621.

    Article  CAS  PubMed  Google Scholar 

  19. Prior, I. A., Muncke, C., Parton, R. G., and Hancock, J. F. (2003) Direct visualization of ras proteins in spatially distinct cell surface microdomains, J. Cell Biol., 160, 165–170, doi: 10.1083/jcb.200209091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pike, L. J. (2003) Lipid rafts, J. Lipid Res., 44, 655–667, doi: 10.1194/jlr.R200021-JLR200.

    Article  CAS  PubMed  Google Scholar 

  21. Simons, K., and Vaz, W. L. C. (2004) Model systems, lipid rafts, and cell membranes, Ann. Rev. Biophys. Biomol. Struct., 33, 269–295, doi: 10.1146/annurev.biophys.32. 110601.141803.

    Article  CAS  Google Scholar 

  22. Neumann, A., Itano, M., and Jacobson, K. (2013) Understanding lipid rafts and other related membrane domains, F1000 Biol. Rep., 2, 31, doi: 10.3410/b2-31.

    Google Scholar 

  23. Simons, K., and Sampaio, J. L. (2011) Membrane organization and lipid rafts, Cold Spring Harb. Perspect. Biol., 3, 1–17, doi: 10.1101/cshperspect.a004697.

    Article  CAS  Google Scholar 

  24. Pike, L. J. (2009) The challenge of lipid rafts, J. Lipid Res., 50, 323–328, doi: 10.1194/jlr.R800040-JLR200.

    Article  CAS  Google Scholar 

  25. Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Polyakova, S., Belov, V. N., Hein, B., Von Middendorff, C., Schonle, A., and Hell, S. W. (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature, 457, 1159–1162, doi: 10.1038/nature07596.

    Article  CAS  PubMed  Google Scholar 

  26. Parton, R. G. (2018) Caveolae: structure, function, and relationship to disease, Ann. Rev. Cell. Develop. Biol., 34, 111–136, doi: 10.1146/annurev-cellbio-100617-062737.

    Article  CAS  Google Scholar 

  27. Marsh, M., and Meer, G. V. (2008) Cell biology: no ESCRTs for exosomes, Science, 319, 1191–1192, doi: 10.1126/science.1155750.

    Article  CAS  PubMed  Google Scholar 

  28. Strauss, K., Goebel, C., Runz, H., Mobius, W., Weiss, S., Feussner, I., Simons, M., and Schneider, A. (2010) Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann–Pick type C disease, J. Biol. Chem., 285, 26279–26288, doi: 10.1074/jbc.M110.134775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuyama, K., Sun, H., Mitsutake, S., and Igarashi, Y. (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid by microglia, J. Biol. Chem., 287, 10977–10989, doi: 10.1074/jbc.M111.324616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, X., Yin, X., and Yang, Y. (2019) Rasal2 suppresses breast cancer cell proliferation modulated by secretory autophagy, Mol. Cell. Biochem., 462, 115–122, doi: 10.1007/s11010-019-03615-7.

    Article  CAS  PubMed  Google Scholar 

  31. Li, X. Q., Liu, J. T., Fan, L. L., Liu, Y., Cheng, L., Wang, F., Yu, H. Q., Gao, J., Wei, W., Wang, H., and Sun, G. P. (2016) Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy, Oncotarget, 7, 24585–24595, doi: 10.18632/oncotarget.8358.

    PubMed  PubMed Central  Google Scholar 

  32. Menck, K., Sonmezer, C., Worst, T. S., Schulz, M., Dihazi, G. H., Streit, F., Erdmann, G., Kling, S., Boutros, M., Binder, C., and Gross, J. C. (2017) Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane, J. Extracel. Vesicles, 6, 1378056, doi: 10.1080/20013078.2017.1378056.

    Article  CAS  Google Scholar 

  33. Sonnino, S., and Prinetti, A. (2009) Sphingolipids and membrane environments for caveolin, FEBS Lett., 583, 597–606, doi: 10.1016/j.febslet.2009.01.007.

    Article  CAS  PubMed  Google Scholar 

  34. Zabeo, D., Cvjetkovic, A., Lasser, C., Schorb, M., Lotvall, J., and Hoog, J. L. (2017) Exosomes purified from a single cell type have diverse morphology, J. Extr. Vesicles, 6, 1329476, doi: 10.1080/20013078.2017.1329476.

    Article  CAS  Google Scholar 

  35. Ji, H., Chen, M., Greening, D. W., He, W., Rai, A., Zhang, W., and Simpson, R. J. (2014) Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures, PLoS One, 9, e110314, doi: 10.1371/journal.pone.0110314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hoshino, A., Costa-Silva, B., Shen, T.-L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., and Lyden, D. (2015) Tumour exosome integrins determine organotropic metastasis, Nature, 527, 329–335, doi: 10.1038/nature15756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sreekumar, P. G., Kannan, R., Kitamura, M., Spee, C., Barron, E., Ryan, S. J., and Hinton, D. R. (2010) αB crys-tallin is apically secreted within exosomes by polarized human retinal pigment epithelium and provides neuroprotection to adjacent cells, PLoS One, 5, doi: 10.1371/journal.pone.0012578.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., and Simpson, R. J. (2013) Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids, Mol. Cell Proteom., 12, 587–598, doi: 10.1074/mcp.M112.021303.

    Article  CAS  Google Scholar 

  39. Mittelbrunn, M., Gutierrez-Vazquez, C., Villarroya-Beltri, C., Gonzalez, S., Sanchez-Cabo, F., Gonzalez, M. A., Bernad, A., and Sanchez-Madrid, F. (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells, Nat. Commun., 2, 282, doi: 10.1038/ncomms1285.

    Article  PubMed  CAS  Google Scholar 

  40. Kajimoto, T., Okada, T., Miya, S., Zhang, L., and Nakamura, S. I. (2013) Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endo-somes, Nat. Commun., 4, 2712, doi: 10.1038/ncomms3712.

    Article  PubMed  CAS  Google Scholar 

  41. Sprong, H., Van Der Sluijs, P., and Van Meer, G. (2001) How proteins move lipids and lipids move proteins, Nat. Rev. Mol. Cell Biol., 2, 504–513, doi: 10.1038/35080071.

    Article  CAS  PubMed  Google Scholar 

  42. Alonso, R., Mazzeo, C., Rodriguez, M. C., Marsh, M., Fraile-Ramos, A., Calvo, V., Avila-Flores, A., Merida, I., and Izquierdo, M. (2011) Diacylglycerol kinase α regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes, Cell Death Differ., 18, 1161–1173, doi: 10.1038/cdd.2010.184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laulagnier, K., Grand, D., Dujardin, A., Hamdi, S., VincentSchneider, H., Lankar, D., Salles, J. P., Bonnerot, C., Perret, B., and Record, M. (2004) PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes, FEBS Lett., 572, 11–14, doi: 10.1016/j.febslet.2004.06.082.

    Article  CAS  PubMed  Google Scholar 

  44. Simons, K., and Toomre, D. (2000) Lipid rafts and signal transduction, Nat. Rev. Mol. Cell Biol., 1, 31–39, doi: 10.1038/35036052.

    Article  CAS  PubMed  Google Scholar 

  45. Levental, I., Grzybek, M., and Simons, K. (2010) Greasing their way: lipid modifications determine protein association with membrane rafts, Biochemistry, 49, 6305–6316, doi: 10.1021/bi100882y.

    Article  CAS  PubMed  Google Scholar 

  46. Tulodziecka, K., Diaz-Rohrer, B. B., Farley, M. M., Chan, R. B., Di Paolo, G., Levental, K. R., Neal Waxham, M., and and Levental, I. (2016) Remodeling of the postsynaptic plasma membrane during neural development, Mol. Biol. Cell, 27, 3480–3489, doi: 10.1091/mbc.E16-06-0420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Staubach, S., and Hanisch, F. G. (2011) Lipid rafts: signaling and sorting platforms of cells and their roles in cancer, Exp. Rev. Prot., 8, 263–277, doi: 10.1586/epr.11.2.

    Article  CAS  Google Scholar 

  48. Yanez-Mo, M., Barreiro, O., Gordon-Alonso, M., Sala-Valdes, M., and Sanchez-Madrid, F. (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes, Trends Cell Biol., 19, 434–446, doi: 10.1016/j.tcb.2009.06.004.

    Article  CAS  PubMed  Google Scholar 

  49. Perez-Hernandez, D., Gutierrez-Vazquez, C., Jorge, I., Lopez-Martin, S., Ursa, A., Sanchez-Madrid, F., Vazquez, J., and Yanez-Mo, M. (2013) The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes, J. Biol. Chem., 288, 11649–11661, doi: 10.1074/jbc.M112.445304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buschow, S. I., Nolte-’t Hoen, E. N. M., van Niel, G., Pols, M. S., ten Broeke, T., Lauwen, M., Ossendorp, F., Melief, C. J. M., Raposo, G., Wubbolts, R., Wauben, M. H. M., and Stoorvogel, W. (2009) MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways, Traffic, 10, 1528–1542, doi: 10.1111/j.1600-0854.2009.00963.x.

    Article  CAS  PubMed  Google Scholar 

  51. Mazurov, D., Barbashova, L., and Filatov, A. (2013) Tetraspanin protein CD9 interacts with metalloprotease CD10 and enhances its release via exosomes, FEBS J., 280, 1200–1213, doi: 10.1111/febs.12110.

    Article  CAS  PubMed  Google Scholar 

  52. Lajoie, P., and Nabi, I. R. (2010) Lipid rafts, caveolae, and their endocytosis, Intern. Rev. Cell Mol. Biol., 282, 135–163, doi: 10.1016/S1937-6448(10)82003-9.

    Article  CAS  Google Scholar 

  53. Meister, M., and Tikkanen, R. (2014) Endocytic trafficking of membrane-bound cargo: a flotillin point of view, Membranes, 4, 356–371, doi: 10.3390/membranes4030356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. El-Sayed, A., and Harashima, H. (2013) Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis, Mol. Ther., 21, 1118–1130, doi: 10.1038/mt.2013.54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huber, T. B., Schermer, B., Muller, R. U., Hohne, M., Bartram, M., Calixto, A., Hagmann, H., Reinhardt, C., Koos, F., Kunzelmann, K., Shirokova, E., Krautwurst, D., Harteneck, C., Simons, M., Pavenstadt, H., Kerjaschki, D., Thiele, C., Walz, G., Chalfie, M., and Benzing, T. (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels, Proc. Natl. Acad. Sci. USA, 103, 17079–17086, doi: 10.1073/pnas.0607465103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nijtmans, L. G. J. (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins, EMBO J., 19, 2444–2451, doi: 10.1093/emboj/19.11.2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Steglich, G., Neupert, W., and Langer, T. (1999) Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria, Mol. Cell Biol., 19, 3435–3442, doi: 10.1128/mcb.19.5.3435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Browman, D. T., Resek, M. E., Zajchowski, L. D., and Robbins, S. M. (2006) Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER, J. Cell Sci., 119, 3149–3160, doi: 10.1242/jcs.03060.

    Article  CAS  PubMed  Google Scholar 

  59. Jang, S. C., Crescitelli, R., Cvjetkovic, A., Belgrano, V., Bagge, R. O., Hoog, J. L., Sundfeldt, K., Ochiya, T., Kalluri, R., and Lotvall, J. (2017) A subgroup of mitochon-drial extracellular vesicles discovered in human melanoma tissues are detectable in patient blood, BioRxiv, doi: 10.1101/174193.

    Google Scholar 

  60. Solis, G. P., Hoegg, M., Munderloh, C., Schrock, Y., Malaga-Trillo, E., Rivera-Milla, E., and Stuermer, C. A. O. (2007) Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains, Biochem. J., 403, 313–322, doi: 10.1042/BJ20061686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Browman, D. T., Hoegg, M. B., and Robbins, S. M. (2007) The SPFH domain-containing proteins: more than lipid raft markers, Trends Cell Biol., 17, 394–402, doi: 10.1016/j.tcb.2007.06.005.

    Article  CAS  PubMed  Google Scholar 

  62. Otto, G. P., and Nichols, B. J. (2011) The roles of flotillin microdomains–endocytosis and beyond, J. Cell Sci., 124, 3933–3940, doi: 10.1242/jcs.092015.

    Article  CAS  PubMed  Google Scholar 

  63. Zborovskaya, I. B., Galetskiy, S. A., and Komel’kov, A. V. (2016) Membrane microdomain proteins and their role in oncogenesis, Uspekhi Mol. Onkol., 3, 16–29, doi: 10.17650/2313-805X-2016-3-3-16.

    Article  Google Scholar 

  64. Glebov, O. O., Bright, N. A., and Nichols, B. J. (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells, Nat. Cell Biol., 8, 46–54, doi: 10.1038/ncb1342.

    Article  CAS  PubMed  Google Scholar 

  65. Frick, M., Bright, N. A., Riento, K., Bray, A., Merrified, C., and Nichols, B. J. (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding, Curr. Biol., 17, 1151–1156, doi: 10.1016/j.cub.2007.05.078.

    Article  CAS  PubMed  Google Scholar 

  66. Thery, C., Amigorena, S., Raposo, G., and Clayton, A. (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr. Protoc. Cell Biol., 30, 3.22.1–3.22.29, doi: 10.1002/0471143030.cb0322s30.

    Article  Google Scholar 

  67. Skryabin, G., Komelkov, A., Galetsky, S., Akselrod, M., and Tchevkina, E. (2018) Analysis of SPFH proteins in exosomes produced by non-small cell lung cancer cells, in Materials of the 22nd Int. Charles Heidelberger Symp. on Cancer Research, Tomsk, Russia, pp. 99–101.

    Google Scholar 

  68. Langhorst, M. F., Reuter, A., Luxenhofer, G., Boneberg, E.-M., Legler, D. F., Plattner, H., and Stuermer, C. A. O. (2006) Preformed reggie/flotillin caps: stable priming platforms for macrodomain assembly in T cells, FASEB J., 20, 711–713, doi: 10.1096/fj.05-4760fje.

    Article  CAS  PubMed  Google Scholar 

  69. Babuke, T., Ruonala, M., Meister, M., Amaddii, M., Genzler, C., Esposito, A., and Tikkanen, R. (2009) Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis, Cell. Signal., 21, 1287–1297, doi: 10.1016/j.cellsig.2009.03.012.

    Article  CAS  PubMed  Google Scholar 

  70. Rungaldier, S., Umlauf, E., Mairhofer, M., Salzer, U., Thiele, C., and Prohaska, R. (2017) Structure-function analysis of human stomatin: a mutation study, PLoS One, 12, 1–24, doi: 10.1371/journal.pone.0178646.

    Article  CAS  Google Scholar 

  71. Salzer, U., and Prohaska, R. (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts, Blood, 97, 1141–1143.

    Article  CAS  PubMed  Google Scholar 

  72. Lee, J. H., Hsieh, C. F., Liu, H. W., Chen, C. Y., Wu, S. C., Chen, T. W., Hsu, C. S., Liao, Y. H., Yang, C. Y., Shyu, J. F., Fischer, W. B., and Lin, C. H. (2017) Lipid raft-associated stomatin enhances cell fusion, FASEB J., 31, 47–59, doi: 10.1096/fj.201600643R.

    Article  CAS  PubMed  Google Scholar 

  73. Salzer, U., Hinterdorfer, P., Hunger, U., Borken, C., and Prohaska, R. (2002) Ca2+-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin, Blood, 99, 2569–2577, doi: 10.1182/blood.V99.7.2569.

    Article  CAS  PubMed  Google Scholar 

  74. De Gassart, A., Geminard, C., Fevrier, B., Raposo, G., and Vidal, M. (2003) Lipid raft-associated protein sorting in exosomes, Blood, 102, 4336–4344, doi: 10.1182/blood-2003-03-0871.

    Article  PubMed  CAS  Google Scholar 

  75. Feuk-Lagerstedt, E., Samuelsson, M., Movitz, C., Rosqvist, A., Karlsson, A., Bergstrom, J., Larsson, T., Mosgoeller, W., Steiner, M., and Prohaska, R. (2002) The presence of stomatin in detergent-insoluble domains of neutrophil granule membranes, J. Leukocyte Biol., 72, 970–977, doi: 10.1189/jlb.72.5.970.

    CAS  PubMed  Google Scholar 

  76. Salzer, U., Zhu, R., Luten, M., Isobe, H., Pastushenko, V., Perkmann, T., Hinterdorfer, P., and Bosman, G. J. C. G. M. (2008) Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin, Transfusion, 48, 451–462, doi: 10.1111/j.1537-2995.2007.01549.

    Article  CAS  PubMed  Google Scholar 

  77. Skryabin, G. O., Komel’kov, A. V., Evtushenko, E. G., Bagrov, D. V., Galetskiy, S. A., Aksel’rod, M. E., and Chevkina, E. M. (2018) Analysis of exosome protein markers in diverse fractions of extracellular vesicles secreted by non-small cell lung cancer cells, Uspekhi Mol. Onkol., 5 (Suppl.), 57–58.

    Google Scholar 

  78. Smart, E. J., Graf, G. A., McNiven, M. A., Sessa, W. C., Engelman, J. A., Scherer, P. E., Okamoto, T., and Lisanti, M. P. (1999) Caveolins, liquid-ordered domains, and signal transduction, Mol. Cell Biol., 19, 7289–7304, doi: 10.1128/mcb.19.11.7289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brown, D. A., and Rose, J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, 68, 533–544, doi: 10.1016/0092-8674(92)90189-J.

    Article  CAS  PubMed  Google Scholar 

  80. Fu, P., Chen, F., Pan, Q., Zhao, X., Zhao, C., Cho, W. C.-S., and Chen, H. (2017) The different functions and clinical significances of caveolin-1 in human adenocarcinoma and squamous cell carcinoma, Onco Targets Ther., 10, 819–835, doi: 10.2147/OTT.S123912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Senetta, R., Stella, G., Pozzi, E., Sturli, N., Massi, D., and Cassoni, P. (2013) Caveolin-1 as a promoter of tumour spreading: when, how, where and why, J. Cell. Mol. Med., 17, 325–336, doi: 10.1111/jcmm.12030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V., and Simons, K. (1995) VIP21/caveolin is a cholesterol-binding protein, Proc. Natl. Acad. Sci. USA, 92, 10339–10343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F. C., Schedl, A., Hailer, H., and Kurzchalia, T. V. (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice, Science, 293, 2449–2452, doi: 10.1126/science.1062688.

    Article  CAS  PubMed  Google Scholar 

  84. Pelkmans, L., and Zerial, M. (2005) Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae, Nature, 436, 128–133, doi: 10.1038/nature03866.

    Article  CAS  PubMed  Google Scholar 

  85. Parton, R. G., and Simons, K. (2007) The multiple faces of caveolae, Nature Rev. Mol. Cell Biol., 8, 185–194, doi: 10.1038/nrm2122.

    Article  CAS  Google Scholar 

  86. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R., and Anderson, R. G. W. (1992) Caveolin, a protein component of caveolae membrane coats, Cell, 68, 673–682, doi: 10.1016/0092-8674(92)90143-Z.

    Article  CAS  PubMed  Google Scholar 

  87. Hill, M. M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S. J., Walser, P., Abankwa, D., Oorschot, V. M. J., Martin, S., Hancock, J. F., and Parton, R. G. (2008) PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function, Cell, 132, 113–124, doi: 10.1016/j.cell.2007.11.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu, L., and Pilch, P. F. (2008) A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization, J. Biol. Chem., 283, 4314–4322, doi: 10.1074/jbc.M707890200.

    Article  CAS  PubMed  Google Scholar 

  89. Lajoie, P., Goetz, J. G., Dennis, J. W., and Nabi, I. R. (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane, J. Cell Biol., 185, 381–385, doi: 10.1083/jcb.200811059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sandvig, K., Kavaliauskiene, S., and Skotland, T. (2018) Clathrin-independent endocytosis: an increasing degree of complexity, Histochem. Cell Biol., 150, 107–118, doi: 10.1007/s00418-018-1678-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kojic, L. D., Joshi, B., Lajoie, P., Le, P. U., Cox, M. E., Turbin, D. A., Wiseman, S. M., and Nabi, I. R. (2007) Raft-dependent endocytosis of autocrine motility factor is phosphatidylinositol 3-kinase-dependent in breast carcinoma cells, J. Biol. Chem., 282, 29305–29313, doi: 10.1074/jbc.M704069200.

    Article  CAS  PubMed  Google Scholar 

  92. Vassilieva, E. V., Gerner-Smidt, K., Ivanov, A. I., and Nusrat, A. (2008) Lipid rafts mediate internalization of β1-integrin in migrating intestinal epithelial cells, Amer. J. Physiol. Gastrointest. Liver Phys., 295, doi: 10.1152/ajpgi.00082.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nwosu, Z. C., Ebert, M. P., Dooley, S., and Meyer, C. (2016) Caveolin-1 in the regulation of cell metabolism: a cancer perspective, Mol. Cancer, 15, 71, doi: 10.1186/s12943-016-0558-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wu, P., Qi, B., Zhu, H., Zheng, Y., Li, F., and Chen, J. (2007) Suppression of staurosporine-mediated apoptosis in Hs578T breast cells through inhibition of neutral-sphin-gomyelinase by caveolin-1, Cancer Lett., 256, 64–72, doi: 10.1016/j.canlet.2007.05.007.

    Article  CAS  PubMed  Google Scholar 

  95. Veldman, R. J., Maestre, N., Aduib, O. M., Medin, J. A., Salvayre, R., and Levade, T. (2001) A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling, Biochem. J., 355, 859–868, doi: 10.1042/ bj3550859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabro, L., Spada, M., Perdicchio, M., Marino, M. L., Federici, C., and Iessi, E. (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients, PLoS One, 4, doi: 10.1371/journal.pone.0005219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Lazar, I., Clement, E., Ducoux-Petit, M., Denat, L., Soldan, V., Dauvillier, S., Balor, S., Burlet-Schiltz, O., Larue, L., Muller, C., and Nieto, L. (2015) Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines, Pigment Cell Melanoma Res., 28, 464–475, doi: 10.1111/pcmr.12380.

    Article  CAS  PubMed  Google Scholar 

  98. Llorente, A., de Marco, M. C., and Alonso, M. (2004) Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line, J. Cell Sci., 117, 5343–5351, doi: 10.1242/jcs.01420.

    Article  CAS  PubMed  Google Scholar 

  99. He, M., Qin, H., Poon, T. C. W., Sze, S. C., Ding, X., Co, N. N., Ngai, S. M., Chan, T. F., and Wong, N. (2015) Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs, Carcinogenesis, 36, 1008–1018, doi: 10.1093/carcin/bgv081.

    Article  CAS  PubMed  Google Scholar 

  100. Mirzapoiazova, T., Lennon, F. E., Mambetsariev, B., Allen, M., Riehm, J., Poroyko, V. A., and Singleton, P. A. (2015) Extracellular vesicles from caveolin-enriched microdomains regulate hyaluronan-mediated sustained vascular integrity, Intern. J. Cell Biol., 2015, 481493, doi: 10.1155/2015/481493.

    Article  CAS  Google Scholar 

  101. Svensson, K. J., Christianson, H. C., Wittrup, A., Bourseau-Guilmain, E., Lindqvist, E., Svensson, L. M., Morgelin, M., and Belting, M. (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid raft-mediated endocytosis negatively regulated by caveolin-1, J. Biol. Chem., 288, 17713–17724, doi: 10.1074/ jbc.M112.445403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Campos, A., Salomon, C., Bustos, R., Diaz, J., Martinez, S., Silva, V., Reyes, C., Diaz-Valdivia, N., Varas-Godoy, M., Lobos-Gonzalez, L., and Quest, A. F. (2018) Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines, Nanomedicine, 13, 2597–2609, doi: 10.2217/nnm-2018-0094.

    Article  CAS  PubMed  Google Scholar 

  103. Huang, K., Fang, C., Yi, K., Liu, X., Qi, H., Tan, Y., Zhou, J., Li, Y., Liu, M., Zhang, Y., Yang, J., Zhang, J., Li, M., and Kang, C. (2018) The role of PTRF/cavin 1 as a biomarker in both glioma and serum exosomes, Theranostics, 8, 1540–1557, doi: 10.7150/thno.22952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding. This study was supported by the Russian Foundation for Basic Research (project 18-04-00038A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Komelkov.

Ethics declarations

Compliance with ethical standards. No description of studies with human subjects or animals performed by any of the authors is provided in the paper.

Additional information

Conflict of interest. The authors declare no conflict of interest.

Russian Text © The Author(s), 2020, published in Biokhimiya, 2020, Vol. 85, No. 2, pp. 208–224.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skryabin, G.O., Komelkov, A.V., Savelyeva, E.E. et al. Lipid Rafts in Exosome Biogenesis. Biochemistry Moscow 85, 177–191 (2020). https://doi.org/10.1134/S0006297920020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920020054

Keywords

Navigation