Skip to main content
Log in

Chaperone and Immunoglobulin-Binding Activities of Skp Protein from Yersinia pseudotuberculosis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Here, we determined qualitative and quantitative characteristics of the chaperone and immunoglobulin-binding activities of recombinant Skp protein (rSkp) from Yersinia pseudotuberculosis using the methods of dynamic light scattering and surface plasmon resonance. Commercial human polyclonal IgG and Fc and Fab fragments of human IgG were used as substrate proteins. The activity of rSkp strongly depended on the medium pH. The most stable low-molecular-weight complexes with a hydrodynamic radius up to 10 nm were formed by rSkp and protein substrates at acidic pH values. Under these conditions, rSkp exhibited the lowest propensity to self-association and the highest affinity for human IgG and its Fc and Fab fragments, as well as prevented their aggregation most efficiently (i.e., demonstrated the maximal chaperone activity). As the medium pH increased, the affinity of rSkp for IgG and its fragments decreased; rSkp was not able to completely prevent the aggregation of protein substrates, but significantly slowed it down. The obtained information may be of practical interest, since the stability of therapeutic IgG preparations affects their safety and efficacy in medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DLS:

dynamic light scattering

IgG:

human immunoglobulin G

k a :

rate constant of complex association

K D :

kinetic constant of complex dissociation

k d :

rate constant of complex dissociation

RH:

hydrodynamic radius of particles (in distribution analysis)

rSkp:

recombinant Skp protein (17 kDa)

RU:

resonance unit

SPR:

surface plasmon resonance

Z-average:

average hydrodynamic radius of particles (in analysis of cumulants).

References

  1. Holck, A., Lossius, I., Aasland, R., Haarr, L., and Kleppe, K. (1987) DNA- and RNA-binding proteins of chromatin from Escherichia coli, Biochim. Biophys. Acta, 908, 188–199, doi: https://doi.org/10.1016/0167-4781(87)90058-3.

    Article  CAS  PubMed  Google Scholar 

  2. Holck, A., and Kleppe, K. (1988) Cloning and sequencing of the gene for the DNA-binding 17K protein of Escherichia coli, Gene, 67, 117–124, doi: https://doi.org/10.1016/0378-1119(88)90014-5.

    Article  CAS  PubMed  Google Scholar 

  3. Koski, P., Rhen, M., Kantele, J., and Vaara, M. (1989) Isolation, cloning, and primary structure of a cationic 16- kDa outer membrane protein of Salmonella typhimurium, J. Biol. Chem., 264, 18973–18980.

    CAS  PubMed  Google Scholar 

  4. Koski, P., Hirvas, L., and Vaara, M. (1990) Complete sequence of the ompH gene encoding the 16-kDa cationic outer membrane protein of Salmonella typhimurium, Gene, 88, 117–120, doi: https://doi.org/10.1016/0378-1119(90)90068-3.

    Article  CAS  PubMed  Google Scholar 

  5. De Cock, Y., Schafer, U., Potgeter, M., Demel, R., Muller, M., and Tommassen, J. (1999) Affinity of the periplasmic chaperone Skp of Escherichia coli for phospholipids, lipopolysaccharides and non-native outer membrane proteins. Role of Skp in the biogenesis of outer membrane protein, Eur. J. Biochem., 259, 96–103, doi: https://doi.org/10.1046/j.14321327.1999.00010.x.

    Article  PubMed  Google Scholar 

  6. Harms, N., Koningstein, G., Dontje, W., Muller, M., Oudega, B., Luirink, J., and de Cock, H. (2001) The early interaction of the outer membrane protein PhoE with the periplasmic chaperone Skp occurs at cytoplasmic membrane, J. Biol. Chem., 276, 18804–18811, doi: https://doi.org/10.1074/jbc.M011194200.

    Article  CAS  PubMed  Google Scholar 

  7. Solov’eva, T. F., Novikova, O. D., and Portnyagina, O. Y. (2012) Biogenesis of β-barrel integral proteins of bacterial outer membrane, Biochemistry (Moscow), 77, 1221–1236.

    Article  CAS  Google Scholar 

  8. Entzminger, K. C., Chang, C., Myhre, R. O., McCallum, K. C., and Maynard, J. A. (2012) The Skp chaperone helps fold soluble proteins in vitro by inhibiting aggregation, Biochemistry, 51, 4822–4834, doi: https://doi.org/10.1021/bi300412y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mazor, Y., Van Blarcom, T., Mabry, R., Iverson, B. L., and Georgiou, G. (2007) Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli, Nat. Biotechnol., 25, 563–565, doi: https://doi.org/10.1038/nbt1296.

    Article  CAS  PubMed  Google Scholar 

  10. Levy, R., Weiss, R., Chen, G., Iverson, B. L., and Georgiou, G. (2001) Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the co-expression of molecular chaperones protein expression and purification, Protein Expr. Purif., 23, 338–347, doi: https://doi.org/10.1006/prep.2001.1520.

    Article  CAS  PubMed  Google Scholar 

  11. Sonoda, H., Kumada, Y., Katsuda, T., and Yamaji, H. (2011) Effects of cytoplasmic and periplasmic chaperones on secretory production of single-chain Fv antibody in Escherichia coli, J. Biosci. Bioeng., 111, 465–470, doi: https://doi.org/10.1016/j.jbiosc.2010.12.015.

    Article  CAS  PubMed  Google Scholar 

  12. Geyer, R., Galanos, C., Westphal, O., and Golecki, J. (1979) A lipopolysaccharide-binding cell-surface protein from Salmonella minnesota. Isolation, partial characterization and occurrence in different Enterobacteriaceae, Eur. J. Biochem., 98, 27–38, doi: https://doi.org/10.1111/j.1432-1033.1979.tb13156.x.

    Article  CAS  PubMed  Google Scholar 

  13. Holck, A., Lossius, I., Aasland, R., and Kleppe, K. (1987) Purification and characterization of the 17 K protein, a DNA-binding protein from Escherichia coli, Biochim. Biophys. Acta, 914, 49–54, doi: https://doi.org/10.1016/0167-4838(87)90160-9.

    Article  CAS  PubMed  Google Scholar 

  14. Shrestha, A., Shi, L., Tanase, S., Tsukamoto, M., Nishino, N., Tokita, K., and Yamamoto, T. (2004) protein, Skp, induces leukocyte chemotaxis via C5a receptor, Am. J. Pathol., 164, 763–772, doi: https://doi.org/10.1016/S0002-9440(10)63164-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vuorio, R., Hirvas, L., Raybourne, R. B., Yu, D. T. Y., and Vaara, M. (1991) The nucleotide and deduced amino acid sequence of the cationic 19 kDa outer membrane protein OmpH of Yersinia pseudotuberculosis, Biochim. Biophys. Acta, 1129, 124–126, doi: https://doi.org/10.1016/0167-4781(91)90226-C.

    Article  CAS  PubMed  Google Scholar 

  16. Lahesmaa, R., Skurnik, M., Vaara, M., Leirisalo-Repo, M., Nissila, M., Granfors, K., and Toivanen, P. (1991) Molecular mimicry between HLA B27 and Yersinia, Salmonella, Shigella and Klebsiella within the same region of HLA α1-helix, Clin. Exp. Immunol., 86, 399–404, doi: https://doi.org/10.1111/j.1365-2249.1991.tb02944.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sidorin, E. V., Ziganshin, R. Kh., Naberezhnykh, G. A., Likhatskaya, G. N., Trifonov, E. V., Anastiuk, S. D., Chernikov, O. V., and Solov’eva, T. F. (2009) Chaperone Skp from Yersinia pseudotuberculosis exhibits immunoglobulin G binding activity, Biochemistry (Moscow), 74, 406–415.

    Article  CAS  Google Scholar 

  18. Sidorin, E. V., Tishchenko, N. M., Khomenko, V. A., Isaeva, M. P., Dmitrenok, P. S., Kim, N. Y., Likhatskaya, G. N., and Solov’eva, T. F. (2012) Molecular cloning, isolation, and properties of chaperone Skp from Yersinia pseudotuberculosis, Biochemistry (Moscow), 77, 1315–1325.

    Article  CAS  Google Scholar 

  19. Sidorin, E. V., Sidoorova, O. V., Tishchenko, N. M., Khomenko, V. A., Novikova, O. D., and Solov’eva, T. F. (2015) Chaperone activity of immunoglobulin-binding protein from Yersinia pseudotuberculosis, Biol. Membr. (Moscow), 32, 217–220, doi: https://doi.org/10.7868/S0233475515030081.

    CAS  Google Scholar 

  20. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizeing the principle of protein-dye binding, Anal. Biochem., 72, 248–254, doi: https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  Google Scholar 

  21. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685, doi: https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  22. Ioannou, J. C., Donald, A. M., and Tromp, R. H. (2015) Characterizing the secondary structure changes occurring in high density systems of BLG dissolved in aqueous pH 3 buffer, Food Hydrocolloids, 46, 216–225, doi: https://doi.org/10.1016/j.foodhyd.2014.12.027.

    Article  CAS  Google Scholar 

  23. Walton, T. A., and Sousa, M. C. (2004) Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation, Mol. Cell, 15, 367–374, doi: https://doi.org/10.1016/j.molcel.2004.07.023.

    Article  CAS  PubMed  Google Scholar 

  24. Hawea, A., Kasperb, J. C., Friessb, W., and Jiskoot, W. (2009) Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress, Eur. J. Pharm. Sci., 38, 79–87, doi: https://doi.org/10.1016/j.ejps.2009.06.001.

    Article  CAS  Google Scholar 

  25. Arosio, P., Barolo, G., Muller-Spath, T., Wu, H., and Morbidelli, M. (2011) Aggregation stability of a monoclonal antibody during downstream processing, Pharm. Res., 28, 1884–1894, doi: https://doi.org/10.1007/s11095-011-0416-7.

    Article  CAS  PubMed  Google Scholar 

  26. Amani, S., Nasim, F., Khan, T. A., Fazili, N. A., Furkan, M., Bhat, I. A., Khan, J. M., Khan, R. H., and Naeem, A. (2014) Detergent induces the formation of IgG aggregates: a multi-methodological approach, Spectrochim. Acta A Mol. Biomol. Spectrosc., 120, 151–160, doi: https://doi.org/10.1016/j.saa.2013.09.141.

    Article  CAS  PubMed  Google Scholar 

  27. Esfandiary, R., Parupudi, A., Casas-Finet, J., Gadre, D., and Sathish, H. (2015) Mechanism of reversible self-asso-ciation of a monoclonal antibody: role of electrostatic and hydrophobic interactions, J. Pharm. Sci., 104, 577–586, doi: https://doi.org/10.1002/jps.24237.

    Article  CAS  PubMed  Google Scholar 

  28. Nezlin, R. (2010) Interactions between immunoglobulin G molecules, Immunol. Lett., 132, 1–5, doi: https://doi.org/10.1016/j.imlet.2010.06.006.

    Article  CAS  PubMed  Google Scholar 

  29. Joubert, M. K., Luo, Q., Nashed-Samuel, Y., Wypych, J., and Narhi, L. O. (2011) Classification and characterization of therapeutic antibody aggregates, J. Biol. Chem., 286, 25118–25133, doi: https://doi.org/10.1074/jbc.M110.160457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo, Q., Joubert, M. K., Stevenson, R., Ketchem, R. R., Narhi, L. O., and Wypych, J. (2011) Chemical modifications in therapeutic protein aggregates generated under different stress conditions, J. Biol. Chem., 286, 25134–25144, doi: https://doi.org/10.1074/jbc.M110.160440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, W. (2005) Protein aggregation and its inhibition in biopharmaceutics, Intern. J. Pharm., 289, 1–30, doi: https://doi.org/10.1016/j.ijpharm.2004.11.014.

    Article  CAS  Google Scholar 

  32. Arosio, P., Rima, S., and Morbidelli, M. (2013) Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates, Pharm. Res., 30, 641–654, doi: https://doi.org/10.1007/s11095-012-0885-3.

    Article  CAS  PubMed  Google Scholar 

  33. Gil, D., and Schrum, A. G. (2013) Strategies to stabilize compact folding and minimize aggregation of antibodybased fragments, Adv. Biosci. Biotechnol., 4, 73–84, doi: https://doi.org/10.4236/abb.2013.44A011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Roberts, C. J. (2014) Therapeutic protein aggregation: mechanisms, design, and control, Trends Biotechnol., 32, 372–380, doi: https://doi.org/10.1016/j.tibtech.2014.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poon, S., Rybchyn, M. S., Easterbrook-Smith, S. B., Carver, J. A., Pankhurst, G. J., and Wilson, M. R. (2002) Mildly acidic pH activates the extracellular molecular chaperone clusterin, J. Biol. Chem., 277, 39532–39540, doi: https://doi.org/10.1074/jbc.M204855200.

    Article  CAS  PubMed  Google Scholar 

  36. Tapley, T. L., Franzmann, T. M., Chakraborty, S., Jakob, U., and Bardwell, J. C. A. (2010) Protein refolding by pH-triggered chaperone binding and release, PNAS, 107, 1071–1076, doi: https://doi.org/10.1073/pnas.0911610107.

    Article  CAS  PubMed  Google Scholar 

  37. Bose, D., Patra, M., and Chakraborty, A. (2017) Effect of pH on stability, conformation, and chaperone activity of erythroid and non-erythroid spectrin, Biochim. Biophys. Acta Proteins Proteom., 1865, 694–702, doi: https://doi.org/10.1016/j.bbapap.2017.03.012.

    Article  CAS  PubMed  Google Scholar 

  38. Malki, A., Le, H.-T., Milles, S., Kern, R., Caldas, T., Abdallah, J., and Richarme, G. (2008) Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB, J. Biol. Chem., 283, 13679–13687, doi: https://doi.org/10.1074/jbc.M800869200.

    Article  CAS  PubMed  Google Scholar 

  39. Tapley, T. L., Korner, J. L., Bargea, M. T., Hupfelda, J., Schauertec, J. A., Gafnic, A., Jakoba, U., and Bardwella, J. C. A. (2009) Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding, PNAS, 106, 5557–5562, doi: https://doi.org/10.1073/pnas.0811811106.

    Article  CAS  PubMed  Google Scholar 

  40. Coleman, L., and Mahler, S. M. (2003) Purification of Fab fragments from a monoclonal antibody papain digest by Gradiflow electrophoresis, Protein Expres. Purif., 32, 246–251, doi: https://doi.org/10.1016/j.pep.2003.07.005.

    Article  CAS  Google Scholar 

  41. Luo, Y., Lu, Z., Raso, S. W., Entrican, C., and Tangarone, B. (2009) Dimers and multimers of monoclonal IgG1 exhibit higher in vitro binding affinities to Fcγ receptors, mAbs, 1, 491–504.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sidorin.

Additional information

Conflict of interest. The authors declare no conflict of interest.

Ethical norm compliance. This article does not contain description of studies with articipation of humans or animals performed by any of the authors.

Russian Text © The Author(s), 2020, published in Biokhimiya, 2020, Vol. 85, No. 1, pp. 93–103.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM19-150, December 9, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorin, E.V., Khomenko, V.A., Kim, N.Y. et al. Chaperone and Immunoglobulin-Binding Activities of Skp Protein from Yersinia pseudotuberculosis. Biochemistry Moscow 85, 80–89 (2020). https://doi.org/10.1134/S0006297920010071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920010071

Keywords

Navigation