Skip to main content
Log in

Features of Organization and Mechanism of Catalysis of Two Families of Terminal Oxidases: Heme-Copper and bd-Type

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Terminal oxidases of aerobic respiratory chains catalyze the transfer of electrons from the respiratory substrate, cytochrome c or quinol, to O2 with the formation of two H2O molecules. There are two known families of these membrane oxidoreductases: heme-copper oxidase superfamily and bd-type oxidase family (cytochromes bd) found in prokaryotes only. The redox reaction catalyzed by these enzymes is coupled to the generation of proton motive force used by the cell to synthesize ATP and to perform other useful work. Due to the presence of the proton pump, heme-copper oxidases create the membrane potential with a greater energy efficiency than cytochromes bd. The latter, however, play an important physiological role that enables bacteria, including pathogenic ones, to survive and reproduce under adverse environmental conditions. This review discusses the features of organization and molecular mechanisms of functioning of terminal oxidases from these two families in the light of recent experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BNC:

binuclear center

COX:

cytochrome oxidase

HCO:

heme-copper oxidase

PLS:

proton-loading site

References

  1. Hemp, J., and Gennis, R. B. (2008) Diversity of the hemecopper superfamily in archaea: insights from genomics and structural modeling, Results Probl. Cell Differ., 45, 1–31; doi: https://doi.org/10.1007/400_2007_046.

    Article  CAS  PubMed  Google Scholar 

  2. Siletsky, S. A. (2013) Steps of the coupled charge translocation in the catalytic cycle of cytochrome c oxidase, Front. Biosci., 18, 36–57; doi: https://doi.org/10.2741/4086.

    Article  CAS  Google Scholar 

  3. Wikstrom, M. (1977) Proton pump coupled to cytochrome c oxidase in mitochondria, Nature, 266, 271–273; doi: https://doi.org/10.1038/266271a0.

    Article  CAS  PubMed  Google Scholar 

  4. Ter Beek, J., Krause, N., and Adelroth, P. (2016) Investigating the proton donor in the NO reductase from Paracoccus denitrificans, PLoS One, 11, e0152745; doi: https://doi.org/10.1371/journal.pone.0152745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pereira, M. M., and Teixeira, M. (2004) Proton pathways, ligand binding and dynamics of the catalytic site in hemecopper oxygen reductases: a comparison between the three families, Biochim. Biophys. Acta, 1655, 340–346; doi: https://doi.org/10.1016/j.bbabio.2003.06.003.

    Article  CAS  PubMed  Google Scholar 

  6. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å, Science, 272, 1136–1144; doi: https://doi.org/10.1126/science.272.5265.1136.

    Article  CAS  PubMed  Google Scholar 

  7. Koepke, J., Olkhova, E., Angerer, H., Muller, H., Peng, G., and Michel, H. (2009) High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways, Biochim. Biophys. Acta, 1787, 635–645; doi: https://doi.org/10.1016/j.bbabio.2009.04.003.

    Article  CAS  PubMed  Google Scholar 

  8. Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., and Iwata, S. (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides, J. Mol. Biol., 321, 329–339; doi: https://doi.org/10.1016/S0022-2836(02)00619-8.

    Article  CAS  PubMed  Google Scholar 

  9. Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puustinen, A., Iwata, S., and Wikstrom, M. (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site, Nat. Struct. Biol., 7, 910–917; doi: https://doi.org/10.1038/82824.

    Article  CAS  PubMed  Google Scholar 

  10. Letts, J. A., Fiedorczuk, K., and Sazanov, L. A. (2016) The architecture of respiratory supercomplexes, Nature, 537, 644–648; doi: https://doi.org/10.1038/nature19774.

    Article  CAS  PubMed  Google Scholar 

  11. Yoshikawa, S., and Shimada, A. (2015) Reaction mechanism of cytochrome c oxidase, Chem. Rev., 115, 1936–1989; doi: https://doi.org/10.1021/cr500266a.

    Article  CAS  PubMed  Google Scholar 

  12. Wikstrom, M., Sharma, V., Kaila, V. R., Hosler, J. P., and Hummer, G. (2015) New perspectives on proton pumping in cellular respiration, Chem. Rev., 115, 2196–2221; doi: https://doi.org/10.1021/cr500448t.

    Article  CAS  PubMed  Google Scholar 

  13. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085–9090; doi: https://doi.org/10.1073/pnas.94.17.9085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siletsky, S. A., Pawate, A. S., Weiss, K., Gennis, R. B., and Konstantinov, A. A. (2004) Transmembrane charge separation during the ferryl-oxo→oxidized transition in a non-pumping mutant of cytochrome c oxidase, J. Biol. Chem., 279, 52558–52565; doi: https://doi.org/10.1074/jbc.M407549200.

    Article  CAS  PubMed  Google Scholar 

  15. Siletsky, S., Kaulen, A. D., and Konstantinov, A. A. (1999) Resolution of electrogenic steps couples to conversion of cytochrome c oxidase from the peroxy- to the ferryl-oxo state, Biochemistry, 38, 4853–4861; doi: https://doi.org/10.1021/bi982614a.

    Article  CAS  PubMed  Google Scholar 

  16. Belevich, I., Bloch, D. A., Belevich, N., Wikstrom, M., and Verkhovsky, M. I. (2007) Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. USA, 104, 2685–2690; doi: https://doi.org/10.1073/pnas.0608794104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siletsky, S. A., Belevich, I., Wikstrom, M., Soulimane, T., and Verkhovsky, M. I. (2009) Time-resolved OH→EH transition of the aberrant ba 3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1787, 201–205; doi: https://doi.org/10.1016/j.bbabio.2008.12.020.

    Article  CAS  PubMed  Google Scholar 

  18. Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Verkhovsky, M. I. (2011) Time-resolved single-turnover of caa 3 oxidase from Thermus thermophilus. Fifth electron of the fully reduced enzyme converts OH into EH state, Biochim. Biophys. Acta, 1807, 1162–1169; doi: https://doi.org/10.1016/j.bbabio.2011.05.006.

    Article  CAS  PubMed  Google Scholar 

  19. Siletsky, S. A., Belevich, I., Soulimane, T., Verkhovsky, M. I., and Wikstrom, M. (2013) The fifth electron in the fully reduced caa 3 from Thermus thermophilus is competent in proton pumping, Biochim. Biophys. Acta, 1827, 1–9; doi: https://doi.org/10.1016/j.bbabio.2012.09.013.

    Article  CAS  PubMed  Google Scholar 

  20. Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Wikstrom, M. (2017) Time-resolved generation of membrane potential by ba 3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states, Biochim. Biophys. Acta, 1858, 915–926; doi: https://doi.org/10.1016/j.bbabio.2017.08.007.

    Article  CAS  Google Scholar 

  21. Sharma, V., Karlin, K. D., and Wikstrom, M. (2013) Computational study of the activated OH state in the catalytic mechanism of cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 110, 16844–16849; doi: https://doi.org/10.1073/pnas.1220379110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zaslavsky, D. L., Smirnova, I. A., Siletsky, S. A., Kaulen, A. D., Millett, F., and Konstantinov, A. A. (1995) Rapid kinetics of membrane potential generation by cytochrome c oxidase with the photoactive Ru(II)-tris-bipyridyl derivative of cytochrome c as electron donor, FEBS Lett., 359, 27–30; doi: https://doi.org/10.1016/0014-5793(94)01443-5.

    Article  CAS  PubMed  Google Scholar 

  23. Siletskiy, S., Soulimane, T., Azarkina, N., Vygodina, T. V., Buse, G., Kaulen, A., and Konstantinov, A. (1999) Time-resolved generation of a membrane potential by ba 3 cytochrome c oxidase from Thermus thermophilus. Evidence for reduction-induced opening of the binuclear center, FEBS Lett., 457, 98–102; doi: https://doi.org/10.1016/S0014-5793(99)01019-4.

    Article  CAS  PubMed  Google Scholar 

  24. Siletsky, S. A., Kaulen, A. D., and Konstantinov, A. A. (1997) Electrogenic events associated with peroxy- to ferryoxo state transition in cytochrome c oxidase, Eur. Biophys. J., 26, 98.

    Google Scholar 

  25. Siletsky, S. A., Han, D., Brand, S., Morgan, J. E., Fabian, M., Geren, L., Millett, F., Durham, B., Konstantinov, A. A., and Gennis, R. B. (2006) Single-electron photoreduction of the PM intermediate of cytochrome c oxidase, Biochim. Biophys. Acta, 1757, 1122–1132; doi: https://doi.org/10.1016/j.bbabio.2006.07.003.

    Article  CAS  PubMed  Google Scholar 

  26. Lee, A., Kirichenko, A., Vygodina, T., Siletsky, S. A., Das, T. K., Rousseau, D. L., Gennis, R., and Konstantinov, A. A. (2002) Ca2+-binding site in Rhodobacter sphaeroides cytochrome c oxidase, Biochemistry, 41, 8886–8898; doi: https://doi.org/10.1021/bi020183x.

    Article  CAS  PubMed  Google Scholar 

  27. Kuznetsova, S. S., Azarkina, N. V., Vygodina, T. V., Siletsky, S. A., and Konstantinov, A. A. (2005) Zinc ions as cytochrome c oxidase inhibitors: two sites of action, Biochemistry (Moscow), 70, 128–136.

    Article  CAS  Google Scholar 

  28. Siletsky, S. A., Zhu, J., Gennis, R. B., and Konstantinov, A. A. (2010) Partial steps of charge translocation in the non-pumping N139L mutant of Rhodobacter sphaeroides cytochrome c oxidase with a blocked D-channel, Biochemistry, 49, 3060–3073; doi: https://doi.org/10.1021/bi901719e.

    Article  CAS  PubMed  Google Scholar 

  29. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A. Y., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321–324; doi: https://doi.org/10.1038/249321a0.

    Article  CAS  PubMed  Google Scholar 

  30. Mamedov, M. D., Tyunyatkina, A. A., Siletsky, S. A., and Semenov, A. Y. (2006) Voltage changes involving photosystem II quinone-iron complex turnover, Eur. Biophys. J., 35, 647–654; doi: https://doi.org/10.1007/s00249-006-0069-3.

    Article  CAS  PubMed  Google Scholar 

  31. Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2016) Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum, Biochim. Biophys. Acta, 1857, 1741–1750; doi: https://doi.org/10.1016/j.bbabio.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  32. Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2019) Elimination of proton donor strongly affects directionality and efficiency of proton transport in ESR, a light-driven proton pump from Exiguobacterium sibiricum, Biochim. Biophys. Acta Bioenerg., 1860, 1–11; doi: https://doi.org/10.1016/j.bbabio.2018.09.365.

    Article  CAS  PubMed  Google Scholar 

  33. Verkhovsky, M. I., Jasaitis, A., Verkhovskaya, M. L., Morgan, J. E., and Wikstrom, M. (1999) Proton translocation by cytochrome c oxidase, Nature, 400, 480–483; doi: https://doi.org/10.1038/22813.

    Article  CAS  PubMed  Google Scholar 

  34. Ruitenberg, M., Kannt, A., Bamberg, E., Fendler, K., and Michel, H. (2002) Reduction of cytochrome c oxidase by a second electron leads to proton translocation, Nature, 417, 99–102; doi: https://doi.org/10.1038/416099a.

    Article  CAS  PubMed  Google Scholar 

  35. Kaila, V. R., Sharma, V., and Wikstrom, M. (2011) The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase, Biochim. Biophys. Acta, 1807, 80–84; doi: https://doi.org/10.1016/j.bbabio.2010.08.014.

    Article  CAS  PubMed  Google Scholar 

  36. Capitanio, N., Palese, L. L., Capitanio, G., Martino, P. L., Richter, O. M., Ludwig, B., and Papa, S. (2012) Allosteric interactions and proton conducting pathways in proton pumping aa 3 oxidases: heme a as a key coupling element, Biochim. Biophys. Acta, 1817, 558–566; doi: https://doi.org/10.1016/j.bbabio.2011.11.003.

    Article  CAS  PubMed  Google Scholar 

  37. Lu, J., and Gunner, M. R. (2014) Characterizing the proton loading site in cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 111, 12414–12419; doi: https://doi.org/10.1073/pnas.1407187111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Vries, S. (2008) The role of the conserved tryptophan 272 of the Paracoccus denitrificans cytochrome c oxidase in proton pumping, Biochim. Biophys. Acta, 1777, 925–928; doi: https://doi.org/10.1016/j.bbabio.2008.05.008.

    Article  CAS  PubMed  Google Scholar 

  39. Brzezinski, P., and Larsson, G. (2003) Redox-driven proton pumping by heme-copper oxidases, Biochim. Biophys. Acta, 1605, 1–13; doi: https://doi.org/10.1016/S0005-2728(03)00079-3.

    Article  CAS  PubMed  Google Scholar 

  40. Arnold, S. (2012) The power of life — cytochrome c oxidase takes center stage in metabolic control, cell signaling and survival, Mitochondrion, 12, 46–56; doi: https://doi.org/10.1016/j.mito.2011.05.003.

    Article  CAS  PubMed  Google Scholar 

  41. Siletsky, S. A., and Konstantinov, A. A. (2012) Cytochrome c oxidase: charge translocation coupled to single-electron partial steps of the catalytic cycle, Biochim. Biophys. Acta, 1817, 476–488; doi: https://doi.org/10.1016/j.bbabio.2011.08.003.

    Article  CAS  PubMed  Google Scholar 

  42. Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed.), 22, 1379–1426; doi: https://doi.org/10.2741/4550.

    Article  CAS  Google Scholar 

  43. Rich, P. R., and Marechal, A. (2013) Functions of the hydrophilic channels in protonmotive cytochrome c oxidase, J. R. Soc. Interface, 10, 20130183; doi: https://doi.org/10.1098/rsif.2013.0183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sharma, V., Jambrina, P. G., Kaukonen, M., Rosta, E., and Rich, P. R. (2017) Insights into functions of the H channel of cytochrome c oxidase from atomistic molecular dynamics simulations, Proc. Natl. Acad. Sci. USA, 114, E10339–E10348; doi: https://doi.org/10.1073/pnas.1708628114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rauhamaki, V., Bloch, D. A., and Wikstrom, M. (2012) Mechanistic stoichiometry of proton translocation by cytochrome cbb 3, Proc. Natl. Acad. Sci. USA, 109, 7286–7291; doi: https://doi.org/10.1073/pnas.1202151109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siletsky, S. A., Belevich, I., Jasaitis, A., Konstantinov, A. A., Wikstrom, M., Soulimane, T., and Verkhovsky, M. I. (2007) Time-resolved single-turnover of ba 3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1767, 1383–1392; doi: https://doi.org/10.1016/j.bbabio.2007.09.010.

    Article  CAS  PubMed  Google Scholar 

  47. Kannt, A., Soulimane, T., Buse, G., Becker, A., Bamberg, E., and Michel, H. (1998) Electrical current generation and proton pumping catalyzed by the ba 3-type cytochrome c oxidase from Thermus thermophilus, FEBS Lett., 434, 17–22; doi: https://doi.org/10.1016/S0014-5793(98)00942-9.

    Article  CAS  PubMed  Google Scholar 

  48. Rauhamaki, V., and Wikstrom, M. (2014) The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A, Biochim. Biophys. Acta, 1837, 999–1003; doi: https://doi.org/10.1016/j.bbabio.2014.02.020.

    Article  CAS  PubMed  Google Scholar 

  49. Rauhamaki, V., Bloch, D. A., Verkhovsky, M. I., and Wikstrom, M. (2009) Active site of cytochrome cbb 3, J. Biol. Chem., 284, 11301–11308; doi: https://doi.org/10.1074/jbc.M808839200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Forte, E., Urbani, A., Saraste, M., Sarti, P., Brunori, M., and Giuffre, A. (2001) The cytochrome cbb 3 from Pseudomonas stutzeri displays nitric oxide reductase activity, Eur. J. Biochem., 268, 6486–6491; doi: https://doi.org/10.1046/j.0014-2956.2001.02597.x.

    Article  CAS  PubMed  Google Scholar 

  51. Forte, E., Borisov, V. B., Vicente, J. B., and Giuffre, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171–234; doi: https://doi.org/10.1016/bs.ampbs.2017.05.002.

    Article  PubMed  Google Scholar 

  52. Borisov, V. B. (1996) Cytochrome bd: structure and properties, Biochemistry (Moscow), 61, 565–574.

    Google Scholar 

  53. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398–1413; doi: https://doi.org/10.1016/j.bbabio.2011.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Safarian, S., Rajendran, C., Muller, H., Preu, J., Langer, J. D., Ovchinnikov, S., Hirose, T., Kusumoto, T., Sakamoto, J., and Michel, H. (2016) Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases, Science, 352, 583–586; doi: https://doi.org/10.1126/science.aaf2477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gavrikova, E. V., Grivennikova, V. G., Borisov, V. B., Cecchini, G., and Vinogradov, A. D. (2009) Assembly of a chimeric respiratory chain from bovine heart submitochondrial particles and cytochrome bd terminal oxidase of Escherichia coli, FEBS Lett., 583, 1287–1291; doi: https://doi.org/10.1016/j.febslet.2009.03.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bertsova, Y. V., Bogachev, A. V., and Skulachev, V. P. (1997) Generation of protonic potential by the bd-type quinol oxidase of Azotobacter vinelandii, FEBS Lett., 414, 369–372; doi: https://doi.org/10.1016/S0014-5793(97)01047-8.

    Article  CAS  PubMed  Google Scholar 

  57. Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., and Verkhovsky, M. I. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800–13809; doi: https://doi.org/10.1021/bi001165n.

    Article  CAS  PubMed  Google Scholar 

  58. Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., Gennis, R. B., and Verkhovsky, M. I. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657–3662; doi: https://doi.org/10.1073/pnas.0405683102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514–28519; doi: https://doi.org/10.1074/jbc.M705562200.

    Article  CAS  PubMed  Google Scholar 

  60. Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b 595/heme d active site, Biochemistry, 47, 7907–7914; doi: https://doi.org/10.1021/bi800435a.

    Article  CAS  PubMed  Google Scholar 

  61. Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., Gennis, R. B., and Verkhovsky, M. I. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320–17324; doi: https://doi.org/10.1073/pnas.1108217108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffre, A., and Sarti, P. (2007) Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265–269.

    PubMed  Google Scholar 

  63. Giuffre, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622–629; doi: https://doi.org/10.1016/j.febslet.2011.07.035.

    Article  CAS  PubMed  Google Scholar 

  64. Giuffre, A., Borisov, V. B., Arese, M., Sarti, P., and Forte, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178–1187; doi: https://doi.org/10.1016/j.bbabio.2014.01.016.

    Article  CAS  PubMed  Google Scholar 

  65. Borisov, V. B., Forte, E., Siletsky, S. A., Arese, M., Davletshin, A. I., Sarti, P., and Giuffre, A. (2015) Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents, Biochemistry (Moscow), 80, 565–575; doi: https://doi.org/10.1134/S0006297915050077.

    Article  CAS  Google Scholar 

  66. Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437–443.

    Google Scholar 

  67. Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability, FEBS Lett., 579, 4567–4570; doi: https://doi.org/10.1016/j.febslet.2005.07.011.

    Article  CAS  PubMed  Google Scholar 

  68. Belevich, I., Borisov, V. B., Bloch, D. A., Konstantinov, A. A., and Verkhovsky, M. I. (2007) Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, 46, 11177–11184; doi: https://doi.org/10.1021/bi700862u.

    Article  CAS  PubMed  Google Scholar 

  69. Avetisyan, A. V., Bogachev, A. V., Murtasina, R. A., and Skulachev, V. P. (1992) Involvement of a d-type oxidase in the Na+-motive respiratory chain of Escherichia coli growing under low ΔμH+ conditions, FEBS Lett., 306, 199–202; doi: https://doi.org/10.1016/0014-5793(92)80999-W.

    Article  CAS  PubMed  Google Scholar 

  70. Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., Poole, R. K., Vicente, J. B., Sarti, P., and Giuffre, A. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788; doi: https://doi.org/10.1038/srep23788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., and Giuffre, A. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201–204; doi: https://doi.org/10.1016/j.febslet.2004.09.013.

    Article  CAS  PubMed  Google Scholar 

  72. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823–4826; doi: https://doi.org/10.1016/j.febslet.2006.07.072.

    Article  CAS  PubMed  Google Scholar 

  73. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97–102; doi: https://doi.org/10.1016/j.bbrc.2007.01.118.

    Article  CAS  PubMed  Google Scholar 

  74. Borisov, V. B., Forte, E., Giuffre, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: different reaction pathways and end-products, J. Inorg. Biochem., 103, 1185–1187; doi: https://doi.org/10.1016/j.jinorgbio.2009.06.002.

    Article  CAS  PubMed  Google Scholar 

  75. Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), 75, 428–436; doi: https://doi.org/10.1134/S000629791004005X.

    Article  CAS  Google Scholar 

  76. Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress, FEBS Lett., 587, 2214–2218; doi: https://doi.org/10.1016/j.febslet.2013.05.047.

    Article  CAS  PubMed  Google Scholar 

  77. Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffre, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182–188; doi: https://doi.org/10.1016/j.bbabio.2014.10.006.

    Article  CAS  PubMed  Google Scholar 

  78. Hoeser, J., Hong, S., Gehmann, G., Gennis, R. B., and Friedrich, T. (2014) Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site, FEBS Lett., 588, 1537–1541; doi: https://doi.org/10.1016/j.febslet.2014.03.036.

    Article  CAS  PubMed  Google Scholar 

  79. Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740–750; doi: https://doi.org/10.1021/bi981908t.

    Article  CAS  PubMed  Google Scholar 

  80. Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087–2094; doi: https://doi.org/10.1016/j.bbabio.2012.06.009.

    Article  CAS  PubMed  Google Scholar 

  81. Leonova, M. M., Fufina, T. Y., Vasilieva, L. G., and Shuvalov, V. A. (2011) Structure-function investigations of bacterial photosynthetic reaction centers, Biochemistry (Moscow), 76, 1465–1483; doi: https://doi.org/10.1134/S0006297911130074.

    Article  CAS  Google Scholar 

  82. Murali, R., and Gennis, R. B. (2018) Functional importance of glutamate-445 and glutamate-99 in proton-coupled electron transfer during oxygen reduction by cytochrome bd from Escherichia coli, Biochim. Biophys. Acta, 1859, 577–590; doi: https://doi.org/10.1016/j.bbabio.2018.04.012.

    Article  CAS  PubMed Central  Google Scholar 

  83. Borisov, V. B., and Verkhovsky, M. I. (2015) Oxygen as acceptor, EcoSal Plus, 6; doi: https://doi.org/10.1128/ecosalplus.ESP-0012-2015.

  84. Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, MBio, 4, e01006–01013; doi: https://doi.org/10.1128/mBio.01006-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b 595 reacts with CO, J. Biol. Chem., 276, 22095–22099; doi: https://doi.org/10.1074/jbc.M011542200.

    Article  CAS  PubMed  Google Scholar 

  86. Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65–67; doi: https://doi.org/10.1016/j.jinorgbio.2012.09.016.

    Article  CAS  PubMed  Google Scholar 

  87. Siletsky, S. A., Dyuba, A. V., Elkina, D. A., Monakhova, M. V., and Borisov, V. B. (2017) Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide, Biochemistry (Moscow), 82, 1354–1366; doi: https://doi.org/10.1134/S000629791711013X.

    Article  CAS  Google Scholar 

  88. Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., Gennis, R. B., and Konstantinov, A. A. (2008) Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: the Fe-to-Fe distance between hemes d and b 595 is 10 Å, Biochemistry, 47, 1752–1759; doi: https://doi.org/10.1021/bi701884g.

    Article  CAS  PubMed  Google Scholar 

  89. Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin hemes in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186; doi: https://doi.org/10.1371/journal.pone.0155186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617; doi: https://doi.org/10.1371/journal.pone.0095617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975–982.

    CAS  PubMed  Google Scholar 

  92. Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231–239.

    Google Scholar 

  93. Vos, M. H., Borisov, V. B., Liebl, U., Martin, J. L., and Konstantinov, A. A. (2000) Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: a di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554–1559; doi: https://doi.org/10.1073/pnas.030528197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Borisov, V. B., Liebl, U., Rappaport, F., Martin, J. L., Zhang, J., Gennis, R. B., Konstantinov, A. A., and Vos, M. H. (2002) Interactions between heme d and heme b 595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654–1662; doi: https://doi.org/10.1021/bi0158019.

    Article  CAS  PubMed  Google Scholar 

  95. Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14–22; doi: https://doi.org/10.1134/S0006297908010021.

    Article  CAS  Google Scholar 

  96. Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657–1664; doi: https://doi.org/10.1016/j.bbabio.2010.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Paulus, A., Rossius, S. G., Dijk, M., and de Vries, S. (2012) Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species, J. Biol. Chem., 287, 8830–8838; doi: https://doi.org/10.1074/jbc.M111.333542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Borisov, V. B., Forte, E., Sarti, P., and Giuffre, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl- and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503–509; doi: https://doi.org/10.1016/j.bbabio.2011.02.007.

    Article  CAS  PubMed  Google Scholar 

  99. Yang, K., Borisov, V. B., Konstantinov, A. A., and Gennis, R. B. (2008) The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies, FEBS Lett., 582, 3705–3709; doi: https://doi.org/10.1016/j.febslet.2008.09.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Azarkina, N., Siletsky, S., Borisov, V., von Wachenfeldt, C., Hederstedt, L., and Konstantinov, A. A. (1999) A cytochrome bb′-type quinol oxidase in Bacillus subtilis strain 168, J. Biol. Chem., 274, 32810–32817; doi: https://doi.org/10.1074/jbc.274.46.32810.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to V. P. Skulachev, A. A. Konstantinov, and A. D. Vinogradov for their interest in this work, useful discussion, and critical remarks.

Funding

This work was supported by the Russian Science Foundation (project 19-14-00063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Borisov.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethical standards

This article does not contain any studies involving animals or human participants performed by any of the authors.

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 11, pp. 1718–1732.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, V.B., Siletsky, S.A. Features of Organization and Mechanism of Catalysis of Two Families of Terminal Oxidases: Heme-Copper and bd-Type. Biochemistry Moscow 84, 1390–1402 (2019). https://doi.org/10.1134/S0006297919110130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919110130

Keywords

Navigation