Skip to main content
Log in

Ubiquitin Subproteome of Brain Mitochondria and Its Changes Induced by Experimental Parkinsonism and Action of Neuroprotectors

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review summarizes the data of our research and published studies on the ubiquitination of brain mitochondrial proteins and its changes during the development of experimental parkinsonism and administration of the neuroprotector isatin (indole-2,3-dione) with special attention to the mitochondrial ubiquitin-conjugating system and location of ubiquitinated proteins in these organelles. Incubation of brain mitochondrial fraction with biotinylated ubiquitin in vitro resulted in the incorporation of biotinylated ubiquitin in both mitochondrial and mitochondria-associated proteins. According to the interactome analysis, the identified non-ubiquitinated proteins are able to form tight complexes with ubiquitinated proteins or their partners and components of mitochondrial membranes, in which interactions of ubiquitin chains with the ubiquitin-binding protein domains play an important role. The studies of endogenous ubiquitination in the total brain mitochondrial fraction of C57Bl mice performed in different laboratories have shown that mitochondrial proteins represent about 30% of all ubiquitinated proteins. However, comparison of brain subproteomes of mitochondrial ubiquitinated proteins reported in the literature revealed significant differences both in their composition and involvement of identified ubiquitinated proteins in biological processes listed in the Gene Ontology database. The development of experimental parkinsonism in C57Bl mice induced by a single-dose administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) resulted in a decrease in the total number of mitochondrial ubiquitinated proteins and increase in the number of oxidized mitochondrial proteins containing the ubiquitin signature (K-ε-GG). Comparison of ubiquitinated proteins associated with the mouse brain mitochondrial fraction and mouse brain mitochondrial proteins bound to the proteasome ubiquitin receptor (Rpn10 subunit) did not reveal any common proteins. This suggests that ubiquitination of brain mitochondrial proteins is not directly related to their degradation in the proteasomes. Proteomic profiling of brain isatin-binding proteins identified enzymes involved in the ubiquitin-conjugating system functioning. Mapping of the identified isatin-binding proteins to known metabolic pathways indicates their participation in the parkin (E3 ubiquitin ligase)-associated pathway (CH000000947). The functional links involving brain mitochondrial ubiquitinated proteins were found only in the group of animals with the MPTP-induced parkinsonism, but not in animals treated with MPTP/isatin or isatin only. This suggests that the neuroprotective effect of isatin may be associated with the impaired functional relationships of proteins targeted to subsequent degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GO:

Gene Ontology database

MAO:

monoamine oxidase

MPTP:

neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PPI:

protein—protein interaction

References

  1. Hershko, A., and Ciechanover, A. (1998) The ubiquitin system, Annu. Rev. Biochem., 67, 425–479.

    Article  CAS  PubMed  Google Scholar 

  2. Hershko, A., Ciechanover, A., and Varshavsky, A. (2000) Basic Medical Research Award. The ubiquitin system, Nat. Med., 6, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz, A. L., and Ciechanover, A. (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology, Annu. Rev. Pharmacol. Toxicol., 49, 73–96, doi: https://doi.org/10.1146/annurev.pharmtox.051208.165340.

    Article  CAS  PubMed  Google Scholar 

  4. Komander, D., and Rape, M. (2012) The ubiquitin code, Annu. Rev. Biochem., 81, 203–229.

    Article  CAS  PubMed  Google Scholar 

  5. Buneeva, O. A., and Medvedev, A. E. (2017) The role of atypical ubiquitination in cell regulation, Biochemistry (Moscow) Suppl. Series B Biomed. Chem., 11, 16–31.

    Article  Google Scholar 

  6. Goldknopf, I. L., and Busch, H. (1977) Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24, Proc. Natl. Acad. Sci. USA, 74, 864–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hershko, A., Ciechanover, A., Heller, H., Haas, A. L., and Rose, I. A. (1980) Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc. Natl. Acad. Sci. USA, 77, 1783–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhuang, Z., and McCauley, R. (1989) Ubiquitin is involved in the in vitro insertion of monoamine oxidase B into mitochondrial outer membranes, J. Biol. Chem., 264, 14594–14596.

    Google Scholar 

  9. Zhuang, Z., Marks, B., and McCauley, R. (1992) The insertion of monoamine oxidase A into the outer membrane of rat liver mitochondria, J. Biol. Chem., 267, 591–596.

    CAS  PubMed  Google Scholar 

  10. Raboy, B., Parag, H. A., and Kulka, R. G. (1986) Conjugation of [I]ubiquitin to cellular proteins in permeabilized mammalian cells: comparison of mitotic and interphase cells, EMBO J., 5, 863–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Magnani, M., Serafini, G., Antonelli, A., Malatesta, M., and Gazzanelli, G. (1991) Evidence for a particulate location of ubiquitin conjugates and ubiquitin-cojugating enzymes in rabbit brain, J. Biol. Chem., 266, 21018–21024.

    CAS  PubMed  Google Scholar 

  12. Hayashi, T., Takada, K., and Matsuda, M. (1992) Subcellular distribution of ubiquitin-protein conjugates in the hippocampus following transient ischemia, J. Neurosci. Res., 31, 561–564, doi: https://doi.org/10.1002/jnr.490310321.

    Article  CAS  PubMed  Google Scholar 

  13. Medvedev, A. E., Kirkel, A. Z., Kamyshanskaya, N. S., and Gorkin, V. Z. (1993) Lipid peroxidation affects catalytic properties of rat liver mitochondrial monoamine oxidases and their sensitivity to proteolysis, Int. J. Biochem., 25, 1791–1799.

    Article  CAS  PubMed  Google Scholar 

  14. Buneeva, O. A., Medvedeva, M. V., and Medvedev, A. E. (1999) Incorporation of ubiquitin into rat brain mitochondria is accompanied by increased proteolytic digestibility of MAO, Neurobiology (Bp), 7, 257–261.

    CAS  Google Scholar 

  15. Buneeva, O. A., Medvedeva, M. V., and Medvedev, A. E. (2008) Ubiquitin causes selective increase in the sensitivity of rat brain mitochondrial monoamine oxidases to various proteases, Biochemistry (Moscow) Suppl. Series B Biomed. Chem., 2, 101–104.

    Google Scholar 

  16. Buneeva, O. A., Medvedeva, M. V., and Medvedev, A. E. (2009) The study of ubiquitin-dependent increase in monoamine oxidase sensitivity to proteolysis and specific inhibitor, pargyline, Biochemistry (Moscow) Suppl. Series B Biomed. Chem., 3, 145–148.

    Article  Google Scholar 

  17. Schwartz, A. L., Trausch, J. S., Ciechanover, A., Slott, J. W., and Geuze, H. (1992) Immunoelectron microscopic localization of the ubiquitin-activating enzyme El in HepG2 cells, Proc. Natl. Acad. Sci. USA, 89, 5542–5546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hormaechea-Agulla, D., Kim, Y., Song, M. S., and Song, S. J. (2018) New insights into the role of E2s in the pathogenesis of diseases: lessons learned from UBE2O, Mol. Cells, 41, 168–178, doi: https://doi.org/10.14348/molcells.2018.0008.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Geisler, S., Vollmer, S., Golombek, S., and Kahle, P. J. (2014) The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy, J. Cell Sci., 127, 3280–3293, doi: https://doi.org/10.1242/jcs.146035.

    Article  CAS  PubMed  Google Scholar 

  20. Patila, H., Yoon, D., Bhowmick, R., Cai, I., Cho, K. I., and Ferreira, P. A. (2019) Impairments in age-dependent ubiquitin proteostasis and structural integrity of selective neurons by uncoupling Ran GTPase from the Ran-binding domain 3 of Ranbp2 and identification of novel mitochondrial isoforms of ubiquitin conjugating enzyme E2I (ubc9) and Ranbp2, Small GTPases, 10, 146–161.

    Article  CAS  Google Scholar 

  21. Lehmann, G., Ziv, T., Braten, O., Admon, A., Udasin, R. G., and Ciechanover, A. (2016) Ubiquitination of specific mitochondrial matrix proteins, Biochem. Biophys. Res. Commun., 475, 13–18, doi: https://doi.org/10.1016/j.bbrc.2016.04.150.

    Article  CAS  PubMed  Google Scholar 

  22. Jeon, H. B., Choi, E. S., Yoon, J. H., Hwang, J. H., Chang, J. W., Lee, E. K., Choi, H. W., Park, Z.-Y., and Yoo, Y. J. (2007) A proteomics approach to identify the ubiquitinated proteins in mouse heart, Biochem. Biophys. Res. Commun., 357, 731–736.

    Article  CAS  PubMed  Google Scholar 

  23. Lavie, J., De Belvalet, H., Sonon, S., Ion, A. M., Dumon, E., Melser, S., Lacombe, D., Dupuy, J. W., Lalou, C., and Benard, G. (2018) Ubiquitin-dependent degradation of mitochondrial proteins regulates energy metabolism, Cell Rep., 23, 2852–2863, doi: https://doi.org/10.1016/j.celrep.2018.05.013.

    Article  CAS  PubMed  Google Scholar 

  24. Buneeva, O., Medvedeva, M., Kopylov, A., Zgoda, V., and Medvedev, A. (2012) Use of biotinylated ubiquitin for analysis of rat brain mitochondrial proteome and interactome, Int. J. Mol. Sci., 3, 11593–11609, doi: https://doi.org/10.3390/ijms130911593.

    Article  CAS  Google Scholar 

  25. Buneeva, O. A., Gnedenko, O. V., Medvedeva, M. V., Ivanov, A. S., and Medvedev, A. E. (2014) The use of immobilized ubiquitin for biosensor analysis of the mitochondrial subinteractome, Biochemistry (Moscow) Suppl. Series B Biomed. Chem., 8, 226–230.

    Article  Google Scholar 

  26. Buneeva, O., Kopylov, A., Kapitsa, I., Ivanova, E., Zgoda, V., and Medvedev, A. (2018) The effect of neurotoxin MPTP and neuroprotector isatin on the profile of ubiquitinated brain mitochondrial proteins, Cells, 7, E91, doi: https://doi.org/10.3390/cells7080091.

    Article  PubMed  CAS  Google Scholar 

  27. Bouter, Y., Kacprowski, T., Weissmann, R., Dietrich, K., Borgers, H., Brauß, A., Sperling, C., Wirths, O., Albrecht, M., Jensen, L. R., Kuss, A. W., and Bayer, T. A. (2014) Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer’s disease by deep sequencing, Front. Aging Neurosci., 6, 75, doi: https://doi.org/10.3389/fnagi.2014.00075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. He, F., and DiMario, P. J. (2011) Drosophila delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDh) is required for proline breakdown and mitochondrial integrity — establishing a fly model for human type II hyperprolinemia, Mitochondrion, 11, 397–404.

    Article  CAS  PubMed  Google Scholar 

  29. Wagner, S. A., Beli, P., Weinert, B. T., Nielsen, M. L., Cox, J., Mann, M., and Choudhary, C. (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles, Mol. Cell. Proteomics, 10, M111.013284, doi: https://doi.org/10.1074/mcp.M111.013284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wagner, S. A., Beli, P., Weinert, B. T., Scholz, C., Kelstrup, C. D., Young, C., Nielsen, M. L., Olsen, J. V., Brakebusch, C., and Choudhary, C. (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues, Mol. Cell. Proteomics, 11, 1578–1585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lee, J. Y., Song, J., Kwon, K., Jang, S., Kim, C., Baek, K., Kim, J., and Park, C. (2012) Human DJ-1 and its homologs are novel glyoxalases, Hum. Mol. Genet., 21, 3215–3225, doi: https://doi.org/10.1093/hmg/dds155.

    Article  CAS  PubMed  Google Scholar 

  32. Ariga, H., Takahashi-Niki, K., Kato, I., Maita, H., Niki, T., and Iguchi-Ariga, S. M. M. (2013) Neuroprotective function of DJ-1 in Parkinson’s disease, Oxid. Med. Cell. Longev., 2013, 683920, doi: https://doi.org/10.1155/2013/683920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Felts, S. J., Owen, B. A. L., Nguyen, P. M., Trepel, J., Donner, D. B., and Toft, D. O. (2000) The HSP90-related protein TRAP1 is a mitochondrial protein with distinct functional properties, J. Biol. Chem., 275, 3305–3312.

    Article  CAS  PubMed  Google Scholar 

  34. Zuehlke, A. D., Beebe, K., Neckers, L., and Prince, T. (2015) Regulation and function of the human HSP90AA1 gene, Gene, 570, 8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kundrat, L., and Regan, L. (2010) Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP, J. Mol. Biol., 395, 587–594.

    Article  CAS  PubMed  Google Scholar 

  36. Flynn, J. M., and Melov, S. (2013) SOD2 in mitochondrial dysfunction and neurodegeneration, Free Rad. Biol. Med., 62, 4–12, doi: https://doi.org/10.1016/j.freeradbiomed.2013.05.027.

    Article  CAS  PubMed  Google Scholar 

  37. Scudamore, O., and Ciossek, T. (2018) Increased oxidative stress exacerbates α-synuclein aggregation in vivo, J. Neuropathol. Exp. Neurol., 77, 443–453, doi: https://doi.org/10.1093/jnen/nly024.

    Article  CAS  PubMed  Google Scholar 

  38. Cookson, M. R. (2005) The biochemistry of Parkinson’s disease, Annu. Rev. Biochem., 74, 9–52.

    Article  CAS  Google Scholar 

  39. Haelterman, N. A., Yoon, W. H., Sandova, H., Jaiswa, M., Shulman, J. M., and Bellen, H. J. (2014) A mitocentric view of Parkinson’s disease, Annu. Rev. Neurosci., 37, 137–159, doi: https://doi.org/10.1146/annurev-neuro-071013-014317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Plotegher, N., and Duchen, M. R. (2017) Crosstalk between lysosomes and mitochondria in Parkinson’s disease, Front. Cell Dev. Biol., 5, 110, doi: https://doi.org/10.3389/fcell.2017.00110.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Doktor, B., Damulewicz, M., and Pyza, E. (2019) Overexpression of mitochondrial ligases reverses rotenone-induced effects in a Drosophila model of Parkinson’s disease, Front. Neurosci., 13, 94, doi: https://doi.org/10.3389/fnins.2019.00094.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Covill-Cooke, C., Howden, J. H., Birsa, N., and Kittler, J. T. (2018) Ubiquitination at the mitochondria in neuronal health and disease, Neurochem. Int., 117, 55–64, doi: https://doi.org/10.1016/j.neuint.2017.07.003.

    Article  CAS  PubMed  Google Scholar 

  43. Buneeva, O. A., and Medvedev, A. E. (2011) Mitochondrial disfunction in Parkinson’s disease, Biochemistry (Moscow) Suppl. Series B Biomed. Chem., 5, 313–336.

    Article  Google Scholar 

  44. Medvedev, A. E., Buneeva, O. A., Kopylov, A. T., Tikhonova, O. V., Medvedeva, M. V., Nerobkova, L. N., Kapitsa, I. G., and Zgoda, V. G. (2017) Brain mitochondrial subproteome of Rpn10-binding proteins and its changes induced by the neurotoxin MPTP and the neuroprotector isatin, Biochemistry (Moscow), 82, 330–339.

    Article  CAS  Google Scholar 

  45. Lucking, C. B., Durr, A., Bonifati, V., Vaughan, J., De Michele, G., Gasser, T., Harhangi, B. S., Meco, G., Denefle, P., Wood, N. W., Agid, Y., Brice, A., French Parkinson’s Disease Genetics Study Group, European Consortium on Genetic Susceptibility in Parkinson’s Disease (2000) Association between early-onset Parkinson’s disease and mutations in the Parkin gene, N. Engl. J. Med., 342, 1560–1567.

    Article  CAS  PubMed  Google Scholar 

  46. Key, J., Mueller, A. K., Gispert, S., Matschke, L., Wittig, I., Corti, O., Munch, C., Decher, N., and Auburger, G. (2019) Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons, Neurobiol. Dis., 127, 114–130.

    Article  CAS  PubMed  Google Scholar 

  47. Medvedev, A., Buneeva, O., Gnedenko, O., Ershov, P., and Ivanov, A. (2018) Isatin, an endogenous non-peptide biofactor: a review of its molecular targets, mechanisms of actions and their biomedical implications, Biofactors, 44, 95–108, doi: https://doi.org/10.1002/biof.1408.

    Article  CAS  PubMed  Google Scholar 

  48. Maret, G., Testa, B., Jenner, P., el Tayar, N., and Carrupt, P. A. (1990) The MPTP story: MAO activates tetrahydropyridine derivatives to toxins causing parkinsonism, Drug Metab. Rev., 22, 291–332.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou, Y., Zhao, Z. Q., and Xie, J. X. (2001) Effect of isatin on rotational behavior and DA levels in caudate putamen in Parkinsonian rats, Brain Res., 917, 127–132.

    Article  CAS  PubMed  Google Scholar 

  50. Hamaue, N., Minami, M., Terado, M., Hirafuji, M., Endo, T., Machida, M., Hiroshige, T., Ogata, A., Tashiro, K., Saito, H., and Parvez, S. H. (2004) Comparative study of the effects of isatin, an endogenous MAO-inhibitor, and selegiline on bradykinesia and dopamine levels in a rat model of Parkinson’s disease induced by the Japanese encephalitis virus, Neurotoxicology, 25, 205–213.

    Article  CAS  PubMed  Google Scholar 

  51. Melamed, E., and Youdim, M. B. H. (1985) Prevention of dopaminergic toxicity of MPTP in mice by phenylethylamine, a specific substrate of type B monoamine oxidase, Br. J. Pharmacol., 86, 529–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Crumeyrolle-Arias, M., Buneeva, O., Zgoda, V., Kopylov, A., Cardona, A., Tournaire, M. C., Pozdnev, V., Glover, V., and Medvedev, A. (2009) Isatin binding proteins in rat brain: in situ imaging, quantitative characterization of specific [H]isatin binding, and proteomic profiling, J. Neurosci. Res., 87, 2763–2772.

    Article  CAS  PubMed  Google Scholar 

  53. Buneeva, O., Gnedenko, O., Zgoda, V., Kopylov, A., Glover, V., Ivanov, A., Medvedev, A., and Archakov, A. (2010) Isatin binding proteins of rat and mouse brain: proteomic identification and optical biosensor validation, Proteomics, 10, 23–37.

    Article  CAS  PubMed  Google Scholar 

  54. Ivanov, Yu. D., Panova, N. G., Gnedenko, O. V., Buneeva, O. A., Medvedev, A. E., and Archakov, A. I. (2002) Study of the tissue and subcellular distribution of isatin-binding proteins with optical biosensor, Vopr. Med. Khim., 48, 73–83.

    CAS  PubMed  Google Scholar 

  55. Medvedev, A., Buneeva, O., Gnedenko, O., Fedchenko, V., Medvedeva, M., Ivanov, Y., Glover, V., and Sandler, M. (2006) Isatin interaction with glyceraldehyde-3-phosphate dehydrogenase, a putative target of neuroprotective drugs: partial agonism with deprenyl, J. Neural Transm., Suppl., 71, 97–103.

    CAS  Google Scholar 

  56. Buneeva, O. A., Kopylov, A. T., Tikhonova, O. V., Zgoda, V. G., Medvedev, A. E., and Archakov, A. I. (2012) Effect of affinity sorbent on proteomic profiling of isatin-binding proteins of mouse brain, Biochemistry (Moscow), 77, 1326–1338.

    Article  CAS  Google Scholar 

  57. Shaid, S., Brandts, C. H., Serve, H., and Dikic, I. (2013) Ubiquitination and selective autophagy, Cell Death Differ., 20, 21–30, doi: https://doi.org/10.1038/cdd.2012.72.

    Article  CAS  PubMed  Google Scholar 

  58. Ji, C. H., and Kwon, Y. T. (2017) Crosstalk and interplay between the ubiquitin-proteasome system and autophagy, Mol. Cells, 40, 441–449, doi: https://doi.org/10.14348/molcells.2017.0115.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lehmann, G., Udasin, R. G., and Ciechanover, A. (2016) On the linkage between the ubiquitin-proteasome system and the mitochondria, Biochem. Biophys. Res. Commun., 473, 80–86.

    Article  CAS  PubMed  Google Scholar 

  60. Bragoszewski, P., Turek, M., and Chacinska, A. (2017) Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system, Open Biol., 7, 170007, doi: https://doi.org/10.1098/rsob.170007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Taylor, E. B., and Rutter, J. (2011) Mitochondrial quality control by the ubiquitin-proteasome system, Biochem. Soc. Trans., 39, 1509–1513, doi: https://doi.org/10.1042/BST0391509.

    Article  CAS  PubMed  Google Scholar 

  62. Lesnik, C., Cohen, Y., Atir-Lande, A., Schuldiner, M., and Arava, Y. (2014) OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria, Nat. Commun., 5, 5711, doi: https://doi.org/10.1038/ncomms6711.

    Article  CAS  PubMed  Google Scholar 

  63. Ivanov, A. S., Zgoda, V. G., and Archakov, A. I. (2011) Technologies of protein interactomics: a review, Rus. J. Bioorg. Chem., 37, 4–16.

    Article  CAS  Google Scholar 

  64. Ivanov, A. S., Ershov, P. V., Molnar, A. A., Mezentsev, Y. V., Kaluzhskiy, L. A., Yablokov, E. O., Florinskaya, A. V., Gnedenko, O. V., Medvedev, A. E., Kozin, S. A., Mitkevichm, V. A., Makarov, A. A., Gilep, A. A., Lushchik, A. Ya., Gaidukevich, I. V., and Usanov, S. A. (2016) Direct molecular fishing in molecular partners investigation in protein-protein and protein-peptide interactions, Rus. J. Bioorg. Chem., 42, 18–27.

    Google Scholar 

  65. Luck, K., Sheynkman, G. M., Zhang, I., and Vidal, M. (2017) Proteome-scale human interactomics, Trends Biochem. Sci., 42, 342–354, doi: https://doi.org/10.1016/j.tibs.2017.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Analysis of literature data was supported by the Russian Foundation for Basic Research (project no. 19-015-00073), the interactome analysis using the STRING open-access software was performed within the framework of the Program of Fundamental Scientific Research of the State Academies of Sciences for 2013–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Medvedeva.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethical standards

Experiments on the interactome analysis performed during the preparation of this review did not involve people and animals as research objects.

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 11, pp. 1683–1700.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buneeva, O.A., Medvedeva, M.V., Kopylov, A.T. et al. Ubiquitin Subproteome of Brain Mitochondria and Its Changes Induced by Experimental Parkinsonism and Action of Neuroprotectors. Biochemistry Moscow 84, 1359–1374 (2019). https://doi.org/10.1134/S0006297919110117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919110117

Keywords

Navigation