Skip to main content
Log in

Protonophoric and Photodynamic Effects of Fluorescein Decyl(triphenyl)phosphonium Ester on the Electrical Activity of Pond Snail Neurons

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Uncouplers of oxidative phosphorylation in mitochondria, which have been essential in elucidating the basic principles of cell bioenergetics, have recently attracted a considerable interest as compounds with therapeutic, e.g., neuro-protective, properties. Here, we report the effect of mitofluorescein (mitoFluo), a new protonophoric uncoupler representing a conjugate of fluorescein with decyl(triphenyl)phosphonium, on the electrical activity of neurons from Lymnaea stagnalis. Incubation with mitoFluo in the dark led to a decrease in the absolute value of the resting membrane potential of the neurons and alterations in their spike activity, such as spike broadening, spike amplitude reduction, and increase in the spike frequency. Prolonged incubation at high (tens micromoles) mitoFluo concentrations resulted in complete suppression of neuronal electrical activity. The effect of mitoFluo on the neurons was qualitatively similar to that of the classical mitochondrial uncoupler carbonyl cyanide m chlorophenylhydrazone (CCCP) but manifested itself after much longer incubation and at higher concentrations. The distinctive feature of mitoFluo is its light induced effect on the electrical activity of neurons. Changes in the parameters of the neuronal activity upon illumination in the presence of mitoFluo were similar to the light induced effects of the well known photosensitizer Rose Bengal, although less pronounced. It was suggested that the effects of mitoFluo on the electrical activity of neurons, both as a mitochondrial uncoupler and a photosensitizer, are mediated by the changes in the cytoplasmic calcium concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BLM:

bilayer lipid membrane

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

CGC:

cerebral giant cell

DNP:

2,4-dinitrophenol

DPhPC:

diphytanoyl phosphatidyl-choline

FCCP:

carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone

mitoFluo:

mitofluorescein, {10-[2-(3-hydroxy-6-oxoxanthen-9-yl)benzoyl]oxidecyl}(triphenyl)phosphonium bromide

RMP:

resting membrane potential

ROS:

reactive oxygen species

References

  1. Korde, A. S. Pettigrew, L. C. Craddock, S. D., and Maragos, W. F. (2005) The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia, J. Neurochem., 94, 1676–1684; doi: https://doi.org/10.1111/j.1471-4159.2005.03328.x.

    Article  CAS  PubMed  Google Scholar 

  2. Silachev, D. N. Khailova, L. S. Babenko, V. A. Gulyaev, M. V. Kovalchuk, S. I. Zorova, L. D. Plotnikov, E. Y. Antonenko, Y. N., and Zorov, D. B. (2014) Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria, Biochim. Biophys. Acta, 1840, 3434–3442; doi: https://doi.org/10.1016/j.bbagen.2014.09.002.

    Article  CAS  PubMed  Google Scholar 

  3. Khailova, L. S. Silachev, D. N. Rokitskaya, T. I. Avetisyan, A. V. Lyamzaev, K. G. Severina, I. I. Il’yasova, T. M. Gulyaev, M. V. Dedukhova, V. I. Trendeleva, T. A. Plotnikov, E. Y. Zvyagilskaya, R. A. Chernyak, B. V. Zorov, D. B. Antonenko, Y. N., and Skulachev, V. P. (2014) A short-chain alkyl derivative of rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector, Biochim. Biophys. Acta, 1837, 1739–1747; doi: https://doi.org/10.1016/j.bbabio.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  4. Antonenko, Y. N. Denisov, S. S. Silachev, D. N. Khailova, L. S. Jankauskas, S. S. Rokitskaya, T. I. Danilina, T. I. Kotova, E. A. Korshunova, G. A. Plotnikov, E. Y., and Zorov, D. B. (2016) A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector, Biochim. Biophys. Acta, 1860, 2463–2473; doi: https://doi.org/10.1016/j.bbagen.2016.07.014.

    Article  CAS  PubMed  Google Scholar 

  5. Boveris, A. (1977) Mitochondrial production of superoxide radical and hydrogen peroxide, Adv. Exp. Med. Biol., 78, 67–82.

    Article  CAS  PubMed  Google Scholar 

  6. Korshunov, S. S. Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, S. S. (1997) Generating, partitioning, targeting and functioning of superoxide in mitochondria, Biosci. Rep., 17, 259–272.

    Article  CAS  PubMed  Google Scholar 

  8. McLaughlin, S. G., and Dilger, J. P. (1980) Transport of protons across membranes by weak acids, Physiol. Rev., 60, 825–863; doi: https://doi.org/10.1152/physrev.1980.60.3.825.

    Article  CAS  PubMed  Google Scholar 

  9. Liberman, E. A. Topaly, V. P. Tsofina, L. M. Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076–1078.

    Article  CAS  PubMed  Google Scholar 

  10. Terada, H. (1990) Uncouplers of oxidative phosphorylation, Environ. Health Perspect., 87, 213–218; doi: https://doi.org/10.1289/ehp.9087213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shchepinova, M. M. Denisov, S. S. Kotova, E. A. Khailova, L. S. Knorre, D. A. Korshunova, G. A. Tashlitsky, V. N. Severin, F. F., and Antonenko, Y. N. (2014) Dodecyl and octyl esters of fluorescein as protonophores and uncouplers of oxidative phosphorylation in mitochondria at submicromolar concentrations, Biochim. Biophys. Acta, 1837, 149–158; doi: https://doi.org/10.1016/j.bbabio.2013.09.011.

    Article  CAS  PubMed  Google Scholar 

  12. Denisov, S. S. Kotova, E. A. Plotnikov, E. Y. Tikhonov, A. A. Zorov, D. B. Korshunova, G. A., and Antonenko, Y. N. (2014) A mitochondria-targeted protonophoric uncoupler derived from fluorescein, Chem. Commun., 50, 15366–15369; doi: https://doi.org/10.1039/c4cc04996a.

    Article  CAS  Google Scholar 

  13. Popova, L. B. Nosikova, E. S. Kotova, E. A. Tarasova, E. O. Nazarov, P. A. Khailova, L. S. Balezina, O. P., and Antonenko, Y. N. (2018) Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials, Biochim. Biophys. Acta Biomembr., 1860, 1000–1007; doi: https://doi.org/10.1016/j.bbamem.2018.01.008.

    Article  CAS  PubMed  Google Scholar 

  14. Doebler, J. A. (2000) Effects of protonophores on membrane electrical characteristics in NG108-15 cells, Neurochem. Res., 25, 263–268.

    Article  CAS  PubMed  Google Scholar 

  15. Tretter, L. Chinopoulos, C., and Adam-Vizi, V. (1998) Plasma membrane depolarization and disturbed Na+ homeostasis induced by the protonophore carbonyl cyanide-p-trifluoromethoxyphenylhydrazone in isolated nerve terminals, Mol. Pharmacol., 53, 734–741.

    Article  CAS  PubMed  Google Scholar 

  16. Benjamin, P. R., and Rose, R. M. (1979) Central generation of bursting in the feeding system of the snail Lymnaea stagnalis, J. Exp. Biol., 80, 93–118.

    CAS  PubMed  Google Scholar 

  17. McCrohan, C. R., and Benjamin, P. R. (1980) Patterns of activity and axonal projections of the cerebral giant cells of the snail Lymnaea stagnalis, J. Exp. Biol., 85, 149–168.

    CAS  PubMed  Google Scholar 

  18. Johnson, D., and Lardy, H. (1967) Isolation of liver or kidney mitochondria, Methods Enzymol., 10, 94–96.

    Article  CAS  Google Scholar 

  19. Mueller, P. Rudin, D. O. Tien, H. T., and Wescott, W. C. (1963) Methods for the formation of single bimolecular lipid membranes in aqueous solution, J. Phys. Chem., 67, 534–535.

    Article  CAS  Google Scholar 

  20. Zhao, Z. Gordan, R. Wen, H. Fefelova, N. Zang, W. J., and Xie, L. H. (2013) Modulation of intracellular calcium waves and triggered activities by mitochondrial Ca flux in mouse cardiomyocytes, PLOS ONE, 8, e80574, doi: https://doi.org/10.1371/journal.pone.0080574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bulbring, E., and Lullmann, H. (1957) The effect of metabolic inhibitors on the electrical and mechanical activity of the smooth muscle of the guinea-pig’s “taenia coli”, J. Physiol., 136, 310–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krnjevic, K. Puil, E., and Werman, R. (1978) Significance of 2,4-dinitrophenol action on spinal motoneurons, J. Physiol., 275, 225–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Byerly, L., and Moody, W. J. (1984) Intracellular calcium ions and calcium currents in perfused neurons of the snail Lymnaea stagnalis, J. Physiol., 352, 637–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tse, A., and Hille, B. (1992) GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes, Science, 255, 462–464.

    Article  CAS  PubMed  Google Scholar 

  25. Stojilkovic, S. S. (2012) Molecular mechanisms of pituitary endocrine cell calcium handling, Cell Calcium, 51, 212–221; doi: https://doi.org/10.1016/j.ceca.2011.11.003.

    Article  CAS  PubMed  Google Scholar 

  26. Carafoli, E. (1967) In vivo effect of uncoupling agents on the incorporation of calcium and strontium into mitochon-dria and other subcellular fractions of rat liver, J. Gen. Physiol., 50, 1849–1864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rottenberg, H., and Scarpa, A. (1974) Calcium uptake and membrane potential in mitochondria, Biochemistry, 13, 4811–4817.

    Article  CAS  PubMed  Google Scholar 

  28. Gunter, T. E. Gunter, K. K. Puskin, J. S., and Russell, P. R. (1978) Efflux of Ca2+ and Mn2+ from rat liver mitochon-dria, Biochemistry, 17, 339–345.

    Article  CAS  PubMed  Google Scholar 

  29. Bernardi, P. Paradisi, V. Pozzan, T., and Azzone, G. F. (1984) Pathway for uncoupler-induced calcium efflux in rat liver mitochondria: inhibition by ruthenium red, Biochemistry, 23, 1645–1651.

    Article  CAS  PubMed  Google Scholar 

  30. Usui, Y. (1973) Determination of quantum yield of singlet oxygen formation by photosensitization, Chem. Lett., 2, 743–744.

    Article  Google Scholar 

  31. Gao, W. Su, Z. Liu, Q., and Zhou, L. (2014) State-dependent and site-directed photodynamic transformation of HCN2 channel by singlet oxygen, J. Gen. Physiol., 143, 633–644; doi: https://doi.org/10.1085/jgp.201311112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rokitskaya, T. I. Antonenko, Y. N., and Kotova, E. A. (1996) Photodynamic inactivation of gramicidin channels: a flash-photolysis study, Biochim. Biophys. Acta, 1275, 221–226.

    Article  PubMed  Google Scholar 

  33. Rokitskaya, T. I. Block, M. Antonenko, Y. N. Kotova, E. A., and Pohl, P. (2000) Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels, Biophys. J., 78, 2572–2580; doi: https://doi.org/10.1016/S0006-3495(00)76801-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antonenko, Y. N. Kotova, E. A., and Rokitskaya, T. I. (2005) Photodynamic effect as a basis of relaxation method of the study of gramicidin channels, Biol. Membr. (Moscow), 22, 275–289.

    CAS  Google Scholar 

  35. Pashkovskaya, A. A. Sokolenko, E. A. Sokolov, V. S. Kotova, E. A., and Antonenko, Y. N. (2007) Photodynamic activity and binding of sulfonated metallophthalocyanines to phospholipid membranes: contribution of metal-phos-phate coordination, Biochim. Biophys. Acta, 1768, 2459–2465; doi: https://doi.org/10.1016/j.bbamem.2007.05.018.

    Article  CAS  PubMed  Google Scholar 

  36. Lyudkovskaya, R. G. (1961) Some peculiarities of the squid giant axon excitation with light, Biofizika, 6, 300–308.

    Google Scholar 

  37. Pooler, J. (1968) Light-induced changes in dye-treated lob-ster giant axons, Biophys. J., 8, 1009–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pooler, J. (1972) Photodynamic alteration of sodium cur-rents in lobster axons, J. Gen. Physiol., 60, 367–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oxford, G. S. Pooler, J. P., and Narahashi, T. (1977) Internal and external application of photodynamic sensitizers on squid giant axons, J. Membr. Biol., 36, 159–173.

    Article  CAS  PubMed  Google Scholar 

  40. Burmistrov, Yu. M. Lyudkovskaya, R. G., and Shuranova, Zh. P. (1969) Electrical activity of the neurons of the cray-fish on vital staining with methylene blue, Biofizika, 14, 495–500.

    PubMed  Google Scholar 

  41. Pooler, J., and Oxford, G. S. (1973) Photodynamic alter-ation of lobster giant axons in calcium-free and calcium-rich media, J. Membr. Biol., 12, 339–348.

    Article  CAS  PubMed  Google Scholar 

  42. Kress, M. Petersen, M., and Reeh, P. W. (1997) Methylene blue induces ongoing activity in rat cutaneous primary afferents and depolarization of DRG neurons via a photo-sensitive mechanism, Naunyn Schmiedebergs Arch. Pharmacol., 356, 619–625.

    Article  CAS  PubMed  Google Scholar 

  43. Uzdensky, A. Bragin, D. Kolosov, M. Dergacheva, O. Fedorenko, G., and Zhavoronkova, A. (2002) Photodynamic inactivation of isolated crayfish mechanore-ceptor neuron: different death modes under different pho-tosensitizer concentrations, Photochem. Photobiol., 76, 431–437.

    Article  CAS  PubMed  Google Scholar 

  44. Neginskaya, M. Berezhnaya, E. Uzdensky, A. B., and Abramov, A. Y. (2018) Reactive oxygen species produced by a photodynamic effect induced calcium signal in neurons and astrocytes, Mol. Neurobiol., 55, 96–102; doi: https://doi.org/10.1007/s12035-017-0721-1.

    Article  CAS  PubMed  Google Scholar 

  45. Grace, A. A., and Bunney, B. S. (1984) The control of fir-ing pattern in nigral dopamine neurons: burst firing, J. Neurosci., 4, 2877–2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hiramitsu, T. Miura, Y., and Machida, H. (1992) Photosensitizer-induced lipid peroxidation in retinal homogenates under illumination, J. Clin. Biochem. Nutr., 12, 109–114.

    Article  CAS  Google Scholar 

  47. Pooler, J. P., and Valenzeno, D. P. (1978) Kinetic factors governing sensitized photooxidation of excitable cell mem-branes, Photochem. Photobiol., 28, 219–226.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project 16-14-10025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Antonenko.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Ethical approval. All applicable international, national, and/or institutional guidelines for the care and use of laboratory animals were followed in this study.

Additional information

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 10, pp. 1421–1436.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM19-041, August 26, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, L.B., Kamysheva, A.L., Rokitskaya, T.I. et al. Protonophoric and Photodynamic Effects of Fluorescein Decyl(triphenyl)phosphonium Ester on the Electrical Activity of Pond Snail Neurons. Biochemistry Moscow 84, 1151–1165 (2019). https://doi.org/10.1134/S0006297919100043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919100043

Keywords

Navigation