Skip to main content
Log in

Comparative Whole-Transcriptome Profiling of Liver Tissue from Wistar Rats Fed with Diets Containing Different Amounts of Fat, Fructose, and Cholesterol

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Differential expression of 30,003 genes was studied in the liver of female Wistar rats fed with isocaloric diets with the excess of fat, fructose, or cholesterol, or their combinations for 62 days using the method of whole-transcriptome pro-filing on a microchip. Relative mRNA expression levels of the Asah2, Crot, Crtc2, Fmo3, GSTA2, LOC1009122026, LOC102551184, NpY, NqO1, Prom1, Retsat, RGD1305464, Tmem104, and Whsc1 genes were also determined by RT-qPCR. All the tested diets affected differently the key metabolic pathways (KEGGs). Significant changes in the expression of steroid metabolism gene were observed in the liver of animals fed with the tested diets (except the high-fat high fructose diet). Both high-fat and high-fructose diets caused a significant decrease in the expression of squalene synthase (FDFT1 gene) responsible for the initial stage of cholesterol synthesis. On the contrary, in animals fed with the high-cholesterol diet (0.5% cholesterol), expression of the FDFT1 gene did not differ from the control group; however, these animals were characterized by changes in the expression of glucose and glycogen synthesis genes, which could lead to the suppression of glycogen synthesis and gluconeogenesis. At the same time, this group demonstrated different liver tissue morphology in comparison with the animals fed with the high-fructose high-fat diet, manifested as the presence of lipid vacuoles of a smaller size in hepatocytes. The high-fructose and high-fructose high-fat diets affected the metabolic pathways associated with intracellular protein catabolism (endocytosis, phagocytosis, proteasomal degradation, protein processing in the endoplasmic reticulum), tight junctions and intercellular contacts, adhesion molecules, and intracellular RNA transport. Rats fed with the high-fructose high-fat or high-cholesterol diets demonstrated consistent changes in the expression of the Crot, Prom1, and RGD1305464 genes, which reflected a coordinated shift in the regulation of lipid and carbohydrate metabolisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIN93M:

93M diet of the American Institute of Nutrition

Asah2 :

N-acylsphingosine amidohydrolase 2 gene (ceramidase)

Crot :

carnitine octanoyltransferase gene

Crtc2 :

CREB-regulated transcription coactivator 2

FAM:

carboxyfluorescein

FDFT1 :

farnesyl-diphosphate farnesyltransferase 1 (squalene synthase) gene

Fmo3 :

flavin-containing monooxygenase 3 gene

GSTA2 :

glutathione-S-transferase alpha 2 gene

HCD:

high-cholesterol diet

HCHFrD:

high-cholesterol high-fructose diet

HFaD:

high-fat diet

HFaHFrD:

high-fat high-fructose diet

HFrD:

high-fructose diet

Inhbb :

inhibin beta B chain (activin β-subunit) gene

LOC1009122026 :

1009122026 gene

LOC102551184 :

102551184 gene

MS:

metabolic syndrome

NpY :

neuropeptide Y gene

NqO1 :

NAD(P)H dehydrogenase, (quinone 1) gene

Prom1 :

prominin 1 gene

Retsat :

retinol saturase gene

RGD1305464 (Sept14):

GTP-binding cytoskeletal protein 1305464 or SEPT14 gene

RT-qPCR:

reverse transcription/quantitative polymerase chain reaction

SSD:

semisynthetic diet

TGF-β:

tumor growth factor beta

Tmem104 :

transmembrane protein 104 gene

Ugt2b37 :

uridine diphosphate glycosyltransferase 2 family, member b17 gene

Whsc1 :

Wolf-Hirschhorn syndrome candidate 1 gene

References

  1. Woods, S. C., Seeley, R. J., Rushing, P. A., D’Alessio, D., and Tso, P. (2003) A controlled high-fat diet induces an obese syndrome in rats, J. Nutr., 133, 1081–1087; doi: https://doi.org/10.1093/jn/133.4.1081.

    Article  CAS  PubMed  Google Scholar 

  2. Rask-Madsen, C., and Kahn, C. (2012) Tissue-specific insulin signaling, metabolic syndrome and cardiovascular disease, Arterioscler. Thromb. Vasc. Biol., 32, 2052–2059; doi: https://doi.org/10.1161/ATVBAHA.111.241919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dietrich, P., and Hellerbrand, C. (2014) Non-alcoholic fatty liver disease, obesity and the metabolic syndrome, Best Pract. Res. Clin. Gastroenterol., 28, 637–653; doi: https://doi.org/10.1016/j.bpg.2014.07.00.

    Article  CAS  PubMed  Google Scholar 

  4. Catrysse, L., and van Loo, G. (2017) Inflammation and the metabolic syndrome: the tissue-specific functions of NF-κB trends, Cell Biol., 27, 417–429; doi: https://doi.org/10.1016/j.tcb.2017.01.006.

    CAS  Google Scholar 

  5. Wong, S. K., Chin, K.-Y., Suhaimi, F. H., Fairus, A., and Ima-Nirwana, S. (2016) Animal models of metabolic syndrome: a review, Nutr. Metab. (Lond), 13, 65–77; doi: https://doi.org/10.1186/s12986-016-0123-9.

    Article  CAS  Google Scholar 

  6. Kim, Y., and Park, T. (2010) DNA microarrays to define and search for genes associated with obesity, Biotechnol. J., 5, 99–112; doi: https://doi.org/10.1002/biot.200900228.

    Article  CAS  PubMed  Google Scholar 

  7. Soltis, A. R., Kennedy, N. J., Xin, X., Zhou, F., Ficarro, S. B., Yap, Y. S., Matthews, B. J., Lauffenburger, D. A., White, F. M., Marto, J. A., Davis, R. J., and Fraenkel, E. (2017) Hepatic dysfunction caused by consumption of a high-fat diet, Cell Rep., 21, 3317–3328; doi: https://doi.org/10.1016/j.celrep.2017.11.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Softic, S., Gupta, M. K., Wang, G. X., Fujisaka, S., O’Neill, B. T., Rao, T. N., Willoughby, J., Harbison, C., Fitzgerald, K., Ilkayeva, O., Newgard, C. B., Cohen, D. E., and Kahn, C. R. (2017) Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling, J. Clin. Invest., 127, 4059–4074; doi: https://doi.org/10.1172/JCI94585.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kirpich, I. A., Gobejishvili, L. N., Bon Homme, M., Waigel, S., Cave, M., Arteel, G., Barve, S. S., McClain, C. J., and Deaciuc, I. V. (2011) Integrated hepatic transcriptome and proteome analysis of mice with high-fat diet-induced nonalcoholic fatty liver disease, J. Nutr. Biochem., 22, 38–45; doi: https://doi.org/10.1016/j.jnutbio.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  10. Kim, S., Sohn, I., Ahn, J. I., Lee, K. H., Lee, Y. S., and Lee, Y. S. (2004) Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model, Gene, 340, 99–109; doi: https://doi.org/10.1016/j.gene.2004.06.015.

    Article  CAS  PubMed  Google Scholar 

  11. Hasebe, T., Tanaka, H., Sawada, K., Nakajima, S., Ohtake, T., Fujiya, M., and Kohgo, Y. (2017) Bone morphogenetic protein-binding endothelial regulator of liver sinusoidal endothelial cells induces iron overload in a fatty liver mouse model, J. Gastroenterol., 52, 341–351; doi: https://doi.org/10.1007/s00535-016-1237-6.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y., Cheng, F., Luo, Y. X., Hu, P., Ren, H., and Peng, M. L. (2017) The role of cytochrome P450 in nonalcoholic fatty liver induced by high-fat diet: a gene expression profile analysis, Zhonghua Gan Zang Bing Za Zhi., 25, 285–290; doi: https://doi.org/10.3760/cma.j.issn.1007-3418.2017.04.010.

    CAS  PubMed  Google Scholar 

  13. Kim, J., Kwon, E. Y., Park, S., Kim, J. R., Choi, S. W., Choi, M. S., and Kim, S. J. (2016) Integrative systems analysis of diet-induced obesity identified a critical transition in the transcriptomes of the murine liver and epididymal white adipose tissue, Int. J. Obes. (Lond.), 40, 338–345; doi: https://doi.org/10.1038/ijo.2015.147.

    Article  CAS  Google Scholar 

  14. Patsouris, D., Reddy, J. K., Muller, M., and Kersten, S. (2006) Peroxisome proliferator-activated receptor α mediates the effects of high-fat diet on hepatic gene expression, Endocrinology, 147, 1508–1516; doi: https://doi.org/10.1210/en.2005-1132.

    Article  CAS  PubMed  Google Scholar 

  15. Holvoet, P., Rull, A., Garcia-Heredia, A., Lopez-Sanroma, S., Geeraert, B., Joven, J., and Camps, J. (2015) Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: a transcriptomic and metabolomic study, Food Chem. Toxicol., 77, 22–33; doi: https://doi.org/10.1016/j.fct.2014.12.017.

    Article  CAS  PubMed  Google Scholar 

  16. Chartoumpekis, D. V., Ziros, P. G., Zaravinos, A., Iskrenova, R. P., Psyrogiannis, A. I., Kyriazopoulou, V. E., Sykiotis, G. P., and Habeos, I. G. (2013) Hepatic gene expression profiling in Nrf2 knockout mice after long-term high-fat diet-induced obesity, Oxid. Med. Cell Longev., 2013, 340731; doi: https://doi.org/10.1155/2013/340731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knebel, B., Hartwig, S., Jacob, S., Kettel, U., Schiller, M., Passlack, W., Koellmer, C., Lehr, S., Muller-Wieland, D., and Kotzka, J. (2018) Inactivation of SREBP-1a phosphorylation prevents fatty liver disease in mice: identification of related signaling pathways by gene expression profiles in liver and proteomes of peroxisomes, Int. J. Mol. Sci., 19, E980; doi: https://doi.org/10.3390/ijms19040980.

    Article  CAS  PubMed  Google Scholar 

  18. Guide for the Care and Use of Laboratory Animals, 8th Edn., Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research (ILAR), Division on Earth and Life Studies (DELS), National Research Council of the National Academies (2011) The National Academies Press, Washington.

    Google Scholar 

  19. Reeves, P. G., Nielsen, F. H., and Fahey, G. C. (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet, J. Nutr., 123, 1939–1951; doi: https://doi.org/10.1093/jn/123.11.1939.

    Article  CAS  PubMed  Google Scholar 

  20. Agilent total RNA isolation mini kit. Protocol, 5th Edn. (2015) URL: http://www.agilent.com/cs/library/usermanuals/Public/5188_2710_A1.pdf.

  21. One-color microarray-based gene expression analysis (low input quick Amp labeling), v. 6.9.1 (2015) URL: http://www.agilent.com/cs/library/usermanuals/Public/G4140-90040_GeneExpression_OneColor_6.9.pdf.

  22. Roskin, G. I., and Levinson, L. B. (1957) Microscopy Techniques [in Russian], Sovetskaya Nauka, Moscow.

    Google Scholar 

  23. Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Statist. Soc. B, 57, 289–300; doi: https://doi.org/10.2307/2346101.

    Google Scholar 

  24. Brown, C. W., Houston-Hawkins, D. E., Woodruff, T. K., and Matzuk, M. M. (2000) Insertion of Inhbb into the Inhba locus rescues the Inhba-null phenotype and reveals new activin functions, Nat. Genet., 25, 453–457; doi: https://doi.org/10.1038/78161.

    Article  CAS  PubMed  Google Scholar 

  25. Beaulieu, M., Levesque, E., Tchernof, A., Beatty, B. G., Belanger, A., and Hum, D. W. (1997) Chromosomal localization, structure, and regulation of the UGT2B17 gene, encoding a C19 steroid metabolizing enzyme, DNA Cell Biol., 16, 1143–1154; doi: https://doi.org/10.1089/dna.1997.16.1143.

    Article  CAS  PubMed  Google Scholar 

  26. Capel, F., Rolland-Valognes, G., Dacquet, C., Brun, M., Lonchampt, M., Ktorza, A., Lockhart, B., and Galizzi, J. P. (2013) Analysis of sterol-regulatory element-binding protein 1c target genes in mouse liver during aging and high-fat diet, J. Nutrigenet. Nutrigenom., 6, 107–122; doi: https://doi.org/10.1159/000350751.

    Article  CAS  Google Scholar 

  27. Choi, J. Y., McGregor, R. A., Kwon, E. Y., Kim, Y. J., Han, Y., Park, J. H., Lee, K. W., Kim, S. J., Kim, J., Yun, J. W., and Choi, M. S. (2016) The metabolic response to a high-fat diet reveals obesity-prone and -resistant phenotypes in mice with distinct mRNA-seq transcriptome profiles, Int. J. Obes. (Lond.), 40, 1452–1460; doi: https://doi.org/10.1038/ijo.2016.70.

    Article  CAS  Google Scholar 

  28. Do, R., Kiss, R. S., Gaudet, D., and Engert, J. C. (2009) Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathway, Clin. Genet., 75, 19–29; doi: https://doi.org/10.1111/j.1399-0004.2008.01099.x.

    Article  CAS  PubMed  Google Scholar 

  29. Torrente, Y., Belicchi, M., Sampaolesi, M., Pisati, F., Meregalli, M., D’Antona, G., Tonlorenzi, R., Porretti, L., Gavina, M., Mamchaoui, K., Pellegrino, M. A., Furling, D., Mouly, V., Butler-Browne, G. S., Bottinelli, R., Cossu, G., and Bresolin, N. (2004) Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle, J. Clin. Invest., 114, 182–195; doi: https://doi.org/10.1172/JCI20325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu, L., Gibson, P., Currle, D. S., Tong, Y., Richardson, R. J., Bayazitov, I. T., Poppleton, H., Zakharenko, S., Ellison, D. W., and Gilbertson, R. J. (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation, Nature, 457, 603–607; doi: https://doi.org/10.1038/nature07589.

    Article  CAS  PubMed  Google Scholar 

  31. Ferdinandusse, S., Mulders, J., Denis, S., Dacremont, G., Waterham, H. R., and Wanders, R. J. (1999) Molecular cloning and expression of human carnitine octanoyltransferase: evidence for its role in the peroxisomal β-oxidation of branched-chain fatty acids, Biochem. Biophys. Res. Commun., 263, 213–218; doi: https://doi.org/10.1006/bbrc.1999.1340.

    Article  CAS  PubMed  Google Scholar 

  32. Apryatin, S. A., Mzhel’skaya, K. V., Trusov, N. V., Balakina, A. S., Kulakova, S. N., Soto, Kh. S., Makarenko, M. A., Riger, N. A., and Tutel’yan, V. A. (2016) Comparative study of Wistar rat and C57Bl/6 mouse hyperlipidemia in vivo models, Vopr. Pitan., 85, 24–33.

    Google Scholar 

  33. Peterson, E. A., Kalikin, L. M., Steels, J. D., Estey, M. P., Trimble, W. S., and Petty, E. M. (2007) Characterization of a SEPT9 interacting protein, SEPT14, a novel testis-specific septin, Mamm. Genome, 18, 796–807; doi: https://doi.org/10.1007/s00335-007-9065-x.

    Article  CAS  PubMed  Google Scholar 

  34. Shinoda, T., Ito, H., Sudo, K., Iwamoto, I., Morishita, R., and Nagata, K. (2010) Septin 14 is involved in cortical neuronal migration via interaction with septin 4, Mol. Biol. Cell, 21, 1324–1334; doi: https://doi.org/10.1091/mbc.E09-10-0869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Apryatin, S. A., Sidorova, Yu. S., Shipelin, V. A., Balakina, A. S., Trusov, N. V., and Mazo, V. K. (2017) Neuromotor activity, anxiety and cognitive function in the in vivo model of alimentary hyperlipidemia and obesity, Bull. Exp. Biol. Med., 163, 37–41; doi: https://doi.org/10.1007/s10517-017-3732-z.

    Article  CAS  PubMed  Google Scholar 

  36. Bengoechea-Alonso, M. T., and Ericsson, J. (2016) The phosphorylation-dependent regulation of nuclear SREBP1 during mitosis links lipid metabolism and cell growth, Cell Cycle, 15, 2753–2765; doi: https://doi.org/10.1080/15384101.2016.1220456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heo, H. S., Kim, E., Jeon, S. M., Kwon, E. Y., Shin, S. K., Paik, H., Hur, C. G., and Choi, M. S. (2013) A nutrigenomic framework to identify time-resolving responses of hepatic genes in diet-induced obese mice, Mol. Cells, 36, 25–38; doi: https://doi.org/10.1007/s10059-013-2336-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jung, U. J., Seo, Y. R., Ryu, R., and Choi, M. S. (2016) Differences in metabolic biomarkers in the blood and gene expression profiles of peripheral blood mononuclear cells among normal weight, mildly obese and moderately obese subjects, Br. J. Nutr., 116, 1022–1032; doi: https://doi.org/10.1017/S0007114516002993.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding. This study was supported by the State Budget Project of the Ministry of Education and Science of Russia no. 0529-2015-0006 “Search for New Molecular Markers of Alimentary Diseases: Genomic and Post-genomic Analysis”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Apryatin or I. V. Gmoshinski.

Ethics declarations

Ethical approval. All applicable international, national, and/or institutional guidelines for the care and use of laboratory animals were followed in this study.

Additional information

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 9, pp. 1344–1358.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apryatin, S.A., Trusov, N.V., Gorbachev, A.Y. et al. Comparative Whole-Transcriptome Profiling of Liver Tissue from Wistar Rats Fed with Diets Containing Different Amounts of Fat, Fructose, and Cholesterol. Biochemistry Moscow 84, 1093–1106 (2019). https://doi.org/10.1134/S0006297919090128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919090128

Keywords

Navigation