Skip to main content
Log in

Role of TGF-β1 and C-Kit Mutations in the Development of Hepatocellular Carcinoma in Hepatitis C Virus-Infected Patients: in vitro Study

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Transforming growth factor beta (TGF-β) acts as a tumor-suppressing cytokine in healthy tissues and non-malignant tumors. Yet, in malignancy, TGF-β can exert the opposite effects that can promote proliferation of cancer cells. C-Kit plays a prominent role in stem cell activation and liver regeneration after injury. However, little is known about the cross-talk between TGF-β and C-Kit and its role in the progression of hepatocellular carcinoma (HCC). Here, we studied the effect of increasing doses of TGF-β1 on CD44+CD90+ liver stem cells (LSCs) and C-Kit gene expression in malignant and adjacent non-malignant liver tissues excised from 32 HCC patients. The percentage of LSCs in malignant tumors was two times higher compared to their counterparts from the non-malignant tissues. When treated with increasing doses of TGF-β1, proliferation of both malignant and non-malignant LSCs was progressively suppressed, but low TGF-β1 dose failed to suppress the growth of malignant LSCs. Moreover, C-Kit exons 9 and 11 were expressed in malignant LSCs, but not in their non-malignant counterparts. Analysis of C-Kit detected mutations in exon 9 (but not in exon 11) in some malignant liver cells resulting in the changes in the amino acid sequence and dysregulation of protein structure and function. Interestingly, in malignant liver cells, mutations in exon 9 were associated with high-viremia hepatitis C virus (HCV), and expression of this exon was not suppressed by the TGF-β1 treatment at all doses. To our knowledge, this is the first report that mutations in the C-Kit gene in HCC patients are associated with high-viremia HCV. Our study emphasizes the need for investigation of the TGF-β1 level and C-Kit mutations in patients with chronic HCV for HCC prevention and better therapy management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C-Kit:

stem cell factor receptor

CSC:

cancer stem cell

HCC:

hepatocellular carcinoma

HCV:

hepatitis C virus

LSC:

liver stem cell

Peg-INF:

pegylated interferon

SCF:

stem cell factor

TGF-β1:

transforming growth factor beta 1

References

  1. Friedman, S. L. (2008) Mechanisms of hepatic fibrogenesis, Gastroenterology, 134, 1655–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., and Forman, D. (2011) Global cancer statistics, CA Cancer J. Clin., 61, 69–90.

    Article  PubMed  Google Scholar 

  3. Rao, S., Zaidi, S., Banerjee, J., Jogunoori, W., Sebastian, R., Mishra, B., Nguyen, B. N., Wu, R. C., White, J., Deng, C., Amdur, R., Li, S., and Mishra, L. (2017) Transforming growth factor-β in liver cancer stem cells and regeneration, Hepatol. Commun., 1, 477–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dragu, D. L., Necula, L. G., Bleotu, C., Diaconu, C. C., and Chivu-Economescu, M. (2015) Therapies targeting cancer stem cells: current trends and future challenges, World J. Stem Cells, 7, 1185–1201.

    PubMed  PubMed Central  Google Scholar 

  5. Xu, L. B., and Liu, C. (2014) Role of liver stem cells in hepatocarcinogenesis, World J. Stem Cells, 6, 579–590.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Qiu, L., Li, H., Fu, S., Chen, X., and Lu, L. (2018) Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC, Oncol. Lett., 15, 2039–2048.

    PubMed  Google Scholar 

  7. Yamashita, T., Honda, M., Nakamoto, Y., Baba, M., Nio, K., Hara, Y., Zeng, S. S., Hayashi, T., Kondo, M., Takatori, H., Yamashita, T., Mizukoshi, E., Ikeda, H., Zen, Y., Takamura, H., Wang, X. W., and Kaneko, S. (2013) Discrete nature of EpCAM+ and CD90+ cancer stem cells in hepatocellular carcinoma, Hepatology, 57, 1484–1497.

    Article  CAS  PubMed  Google Scholar 

  8. Yamashita, T., Ji, J., Budhu, A., Forgues, M., Yang, W., Wang, H. Y., Jia, H., Ye, Q., Qin, L. X., Wauthier, E., Reid, L. M., Minato, H., Honda, M., Kaneko, S., Tang, Z. Y., and Wang, X. W. (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features, Gastroenterology, 136, 1012–1024.

    Article  CAS  PubMed  Google Scholar 

  9. Ding, W., Mouzaki, M., You, H., Laird, J. C., Mato, J., Lu, S. C., and Rountree, C. B. (2009) CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis, Hepatology, 49, 1277–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiang, Y., Yang, T., Pang, B. Y., Zhu, Y., and Liu, Y. N. (2016) The progress and prospects of putative biomarkers for liver cancer stem cells in hepatocellular carcinoma, Stem Cells Int., 2016, 7614971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amin, R., and Mishra, L. (2008) Liver stem cells and TGF-β in hepatic carcinogenesis, Gastrointest. Cancer Res., 2, S27–S30.

    PubMed  PubMed Central  Google Scholar 

  12. Majumdar, A., Curley, S. A., Wu, X., Brown, P., Hwang, J. P., Shetty, K., Yao, Z. X., He, A. R., Li, S., Katz, L., Farci, P., and Mishra, L. (2012) Hepatic stem cells and transforming growth factor-β in hepatocellular carcinoma, Nat. Rev. Gastroenterol. Hepatol., 9, 530–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ren, X., Hu, B., and Colletti, L. (2008) Stem cell factor and its receptor, c-kit, are important for hepatocyte proliferation in wild-type and tumor necrosis factor receptor-1 knockout mice after 70% hepatectomy, Surgery, 143, 790–802.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen, L., Shen, R., Ye, Y., Pu, X. A., Liu, X., Duan, W., Wen, J., Zimmerer, J., Wang, Y., Liu, Y., Lasky, L. C., Heerema, N. A., Perrotti, D., Ozato, K., Kuramochi-Miyagawa, S., Nakano, T., Yates, A. J., Carson, W. E., 3rd, Lin, H., Barsky, S. H., and Gao, J. X. (2007) Precancerous stem cells have the potential for both benign and malignant differentiation, PLoS One, 2, e293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rojas, A., Zhang, P., Wang, Y., Foo, W. C., Munoz, N. M., Xiao, L., Wang, J., Gores, G. J., Hung, M. C., and Blechacz, B. (2016) A positive TGF-β/C-KIT feedback loop drives tumor progression in advanced primary liver cancer, Neoplasia, 18, 371–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, M. K., Sun, H. Q., Xiang, Y. C., Jiang, F., Su, Y. P., and Zou, Z. M. (2012) Different roles of TGF-β in the multi-lineage differentiation of stem cells, World J. Stem Cells, 4, 28–34.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Anzano, M. A., Roberts, A. B., Smith, J. M., Sporn, M. B., and De Larco, J. E. (1983) Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type alpha and type beta transforming growth factors, Proc. Natl. Acad. Sci. USA, 80, 6264–6268.

    Article  CAS  PubMed  Google Scholar 

  18. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool, J. Mol. Biol., 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  19. Weckx, S., Del-Favero, J., Rademakers, R., Claes, L., Cruts, M., De-Jonghe, P., Van Broeckhoven, C., and De Rijk, P. (2005) NovoSNP, a novel computational tool for sequence variation discovery, Genome Res., 15, 436–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 41, 95–98.

    CAS  Google Scholar 

  21. Chemical Computing Group: the molecular operating environment (MOE), version 2010.10. Chemical Computing Group, Montreal, QC, Canada (2010) (http://www.chemcomp.com).

  22. Kumar, P., Henikoff, S., and Ng, P. C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat. Protoc., 4, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  23. Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S. Y., Lopez, R., and Hunter, S. (2014) InterProScan 5: genome-scale protein function classification, Bioinformatics, 30, 1236–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finn, R. D., Attwood, T. K., Babbitt, P. C., Bateman, A., Bork, P., Bridge, A. J., Chang, H. Y., Dosztanyi, Z., El-Gebali, S., Fraser, M., Gough, J., Haft, D., Holliday, G. L., Huang, H., Huang, X., Letunic, I., Lopez, R., Lu, S., Marchler-Bauer, A., Mi, H., Mistry, J., Natale, D. A., Necci, M., Nuka, G., Orengo, C. A., Park, Y., Pesseat, S., Piovesan, D., Potter, S. C., Rawlings, N. D., Redaschi, N., Richardson, L., Rivoire, C., Sangrador-Vegas, A., Sigrist, C., Sillitoe, I., Smithers, B., Squizzato, S., Sutton, G., Thanki, N., Thomas, P. D., Tosatto, S. C., Wu, C. H., Xenarios, I., Yeh, L. S., Young, S. Y., and Mitchell, A. L. (2017) InterPro in 2017-beyond protein family and domain annotations, Nucleic Acids Res., 45, D190–D199.

    Article  CAS  PubMed  Google Scholar 

  25. Oishi, N., and Wang, X. W. (2011) Novel therapeutic strategies for targeting liver cancer stem cells, Int. J. Biol. Sci., 7, 517–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanaka, M., Itoh, T., Tanimizu, N., and Miyajima, A. (2011) Liver stem/progenitor cells: their characteristics and regulatory mechanisms, J. Biochem., 149, 231–239.

    Article  CAS  PubMed  Google Scholar 

  27. Irfan, A., and Ahmed, I. (2015)) Could stem cell therapy be the cure in liver cirrhosis? J. Clin. Exp. Hepatol., 5, 142–146.

    Article  PubMed  Google Scholar 

  28. Yashpal, N. K., Li, J., and Wang, R. (2004) Characterization of c-Kit and nestin expression during islet cell development in the prenatal and postnatal rat pancreas, Dev. Dyn., 229, 813–825.

    Article  CAS  PubMed  Google Scholar 

  29. Mansuroglu, T., Baumhoer, D., Dudas, J., Haller, F., Cameron, S., Lorf, T., Fuzesi, L., and Ramadori, G. (2009) Expression of stem cell factor receptor c-kit in human non-tumoral and tumoral hepatic cells, Eur. J. Gastroenterol. Hepatol., 21, 1206–1211.

    Article  CAS  PubMed  Google Scholar 

  30. Abbaspour Babaei, M., Kamalidehghan, B., Saleem, M., Huri, H. Z., and Ahmadipour, F. (2016) Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells, Drug Des. Devel. Ther., 10, 2443–2459.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hussain, S. R., Naqvi, H., Ahmed, F., Babu, S. G., Bansal, C., and Mahdi, F. (2012) Identification of the c-kit gene mutations in biopsy tissues of mammary gland carcinoma tumor, J. Egypt. Natl. Canc. Inst., 24, 97–103.

    Article  PubMed  Google Scholar 

  32. McDonell, L. M., Kernohan, K. D., Boycott, K. M., and Sawyer, S. L. (2015) Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin, Hum. Mol. Genet., 24, R60–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lennartsson, J., and Ronnstrand, L. (2006) The stem cell factor receptor/c-Kit as a drug target in cancer, Curr. Cancer Drug Targets, 6, 561–571.

    Article  Google Scholar 

  34. El-Serafi, M. M., Bahnassy, A. A., Ali, N. M., Eid, S. M., Kamel, M. M., Abdel-Hamid, N. A., and Zekri, A. R. (2010) the prognostic value of c-Kit, K-ras codon 12, and p53 codon 72 mutations in Egyptian patients with stage II colorectal cancer, Cancer, 116, 4954–4964.

    Article  CAS  PubMed  Google Scholar 

  35. Cardoso, H. J., Figueira, M. I., and Socorro, S. (2017) The stem cell factor (SCF)/c-KIT signaling in testis and prostate cancer, J. Cell Commun. Signal., 11, 297–307.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paronetto, M. P., Farini, D., Sammarco, I., Maturo, G., Vespasiani, G., Geremia, R., Rossi, P., and Sette, C. (2004) Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer, Am. J. Pathol., 164, 1243–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bai, C. G., Liu, X. H., Xie, Q., Feng, F., and Ma, D. L. (2005) A novel gain of function mutant in C-kit gene and its tumorigenesis in nude mice, World J. Gastroenterol., 11, 7104–7108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, Q., Guo, S., Wang, C. C., Sun, X., Wang, D., Xu, N., Jin, S. F., and Li, K. Z. (2015) Cross-talk between TGF-β/ Smad pathway and Wnt/β-catenin pathway in pathological scar formation, Int. J. Clin. Exp. Pathol., 8, 7631–7639.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, B. H., Chen, W., Stippec, S., and Cobb, M. H. (2007) Biological cross-talk between WNK1 and the transforming growth factor-Smad signaling pathway, J. Biol. Chem., 282, 17985–17996.

    Article  CAS  PubMed  Google Scholar 

  40. Tekin Koruk, S., Ozardali, I., Dinзoglu, D., Guldur, M., and Calisir, C. (2012) Can the presence of C-Kit-positive hepatic progenitor cells in chronic hepatitis C have a role in the follow-up of the disease? Erciyes Med. J., 34, 44–49.

    Article  Google Scholar 

  41. Kwon, Y. C., Bose, S. K., Steele, R., Meyer, K., Di Bisceglie, A. M., Ray, R. B., and Ray, R. (2015) Promotion of cancer stem-like cell properties in hepatitis C virus-infected hepatocytes, J. Virol., 89, 11549–11556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Du, Y., Su, T., Ding, Y., and Cao, G. (2012) Effects of antiviral therapy on the recurrence of hepatocellular carcinoma after curative resection or liver transplantation, Hepat. Mon., 12, e6031.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li, L., Liu, W., Chen, Y. H., Fan, C. L., Dong, P. L., Wei, F. L., Li, B., Chen, D. X., and Ding, H. G. (2013) Antiviral drug resistance increases hepatocellular carcinoma: a prospective decompensated cirrhosis cohort study, World J. Gastroenterol., 19, 8373–8381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shah, Y. M., and van den Brink, G. R. (2015) c-kit as a novel potential therapeutic target in colorectal cancer, Gastroenterology, 149, 534–537.

    Article  CAS  PubMed  Google Scholar 

  45. Chung, C. Y., Yeh, K. T., Hsu, N. C., Chang, J. H., Lin, J. T., Horng, H. C., and Chang, C. S. (2005) Expression of c-kit protooncogene in human hepatocellular carcinoma, Cancer Lett., 217, 231–236.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Cancer Institute, Cairo University, Egypt. The authors would like to thank all members of the Cancer Biology Department for their help.

Funding

Funding. This study was supported in part by the National Institutes of Health (grant CA203420 to HA).

Author information

Authors and Affiliations

Authors

Contributions

Authors’ contributions. All authors were involved in the preparation of this manuscript. MZ collected the data; TA, HA, and WC wrote the manuscript. AI and AA performed surgery and designed the study. MH, ZF, and MH summarized the data and revised the manuscript. AH substantially contributed to the study design, performed surgery, and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. A. Al-Shafie.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Ethical approval. The study was carried out with permission from the Institution Review Board (IRB) of National Cancer Institute, Cairo University (#IRB00004025) in accordance with applicable institutional and international regulations and guidelines and confirmed to the provisions of the Declaration of Helsinki.

Patient consent for publication. All patients were informed of the investigational nature of this study and provided their written informed consent.

Availability of data and materials. The datasets generated and/or analyzed in this study are available from http://www.chemcomp.com.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 8, pp. 1189–1204.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Houseini, M.E., Ismail, A., Abdelaal, A.A. et al. Role of TGF-β1 and C-Kit Mutations in the Development of Hepatocellular Carcinoma in Hepatitis C Virus-Infected Patients: in vitro Study. Biochemistry Moscow 84, 941–953 (2019). https://doi.org/10.1134/S0006297919080108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919080108

Keywords

Navigation