Skip to main content
Log in

Defective Central Immune Tolerance Induced by High-Dose D-Galactose Resembles Aging

Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

D-Galactose (D-Gal) promotes accumulation of reactive oxygen species and formation of advanced glycation end-products, ultimately resulting in oxidative stress. D-Gal has been widely used to induce accelerated aging in anti-aging medical research. Although thymic epithelial cells are particularly sensitive to oxidative stress, there are few reports on the thymus changes accompanying D-Gal-induced aging in mice. To study the effect of D-Gal on rodent thymus, we investigated the degree of thymus atrophy and changes in the atrophy relative index in C57BL/6J mice following subcutaneous injection of D-Gal at different doses (200, 500, 1000 mg/kg per day) for 60 days. Compared with the vehicle-treated (0.9% saline) and young controls, D-Gal at doses of 500 and 1000 mg/kg per day led to a significant thymic atrophy; the latter dose caused atrophy similar to that observed in naturally aged (18-20-month-old) mice. Mice treated with high-dose D-Gal exhibited greater immunosenescence, defective central immune tolerance, increased levels of activated splenic immune cell, and chronic low-grade inflammation, i.e., outcomes similar to those observed in natural aging in mice. Taken together, our results indicate that mice treated with high-dose D-Gal may be a valid model for studying induced thymic atrophy and effects of aging on the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

D-Gal:

D-galactose

MDA:

malondialdehyde

NS:

normal saline

ROS:

reactive oxygen species

RTE:

recent thymic emigrant

SAMP:

senescence-accelerated mouse prone (model)

SOD:

superoxide dismutase

TEC:

thymic epithelial cell

TRA:

tissue-restricted antigen

tTreg:

thymic regulatory T cell

References

  1. Sander, M., Oxlund, B., Jespersen, A., Krasnik, A., Mortensen, E., Westendorp, R., and Rasmussen, L. (2015) The challenges of human population ageing, Age Ageing, 44, 185–187; doi: https://doi.org/10.1093/ageing/afu189.

    Article  PubMed  Google Scholar 

  2. De Martinez, T. I., and de la Fuente, M. (2015) The role of Hsp70 in oxi-inflammaging and its use as a potential bio-marker of lifespan, Biogerontology, 16, 709–721; doi: https://doi.org/10.1007/s10522-015-9607-7.

    Article  CAS  Google Scholar 

  3. Go, Y., and Jones, D. (2017) Redox theory of aging: implications for health and disease, Clin. Sci., 131, 1669–1688; doi: https://doi.org/10.1042/CS20160897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guzik, T., and Cosentino, F. (2018) Epigenetics and immunometabolism in diabetes and aging, Antioxid. Redox Signal., 29, 257–274; doi: https://doi.org/10.1089/ars.2017.7299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones, D., and Sies, H. (2015) The redox code, Antioxid. Redox Signal., 23, 734–746; doi: https://doi.org/10.1089/ars.2015.6247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones, D. (2016) Hydrogen peroxide and central redox theory for aerobic life: a tribute to Helmut Sies: scout, trail-blazer, and redox pioneer, Arch. Biochem. Biophys., 595, 13–18; doi: https://doi.org/10.1016/j.abb.2015.10.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sies, H. (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress, Redox Biol., 11, 613–619; doi: https://doi.org/10.1016/j.redox.2016.12.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shwe, T., Pratchayasakul, W., Chattipakorn, N., and Chattipakorn, S. (2018) Role of D-galactose-induced brain aging and its potential used for therapeutic interventions, Exp. Gerontol., 101, 13–36; doi: https://doi.org/10.1016/j.exger.2017.10.029.

    Article  CAS  PubMed  Google Scholar 

  9. Li, M., Guo, K., Adachi, Y., and Ikehara, S. (2016) Immune dysfunction associated with abnormal bone marrow-derived mesenchymal stroma cells in senescence accelerated mice, Int. J. Mol. Sci., 17, E183; doi: https://doi.org/10.3390/ijms17020183.

    Article  CAS  PubMed  Google Scholar 

  10. Currais, A., Farrokhi, C., Dargusch, R., Armando, A., Quehenberger, O., Schubert, D., and Maher, P. (2018) Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse, J. Gerontol. A Biol. Sci. Med. Sci., 73, 299–307; doi: https://doi.org/10.1093/gerona/glx104.

    Article  CAS  PubMed  Google Scholar 

  11. Morava, E. (2014) Galactose supplementation in phospho-glucomutase-1 deficiency: review and outlook for a novel treatable CDG, Mol. Genet. Metab., 112, 275–279; doi: https://doi.org/10.1016/j.ymgme.2014.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bo-Htay, C., Palee, S., Apaijai, N., Chattipakorn, S., and Chattipakorn, N. (2018) Effects of D-galactose-induced aging on the heart and its potential interventions, J. Cell. Mol. Med., 22, 1392–1410; doi: https://doi.org/10.1111/jcmm.13472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, H., Hu, L., Li, L., Wu, X., Fan, Z., Zhang, C., Wang, J., Jia, J., and Wang, S. (2018) Inorganic nitrate alleviates the senescence-related decline in liver function, Sci. China Life Sci., 61, 24–34; doi: https://doi.org/10.1007/s11427-017-9207-x.

    Article  CAS  PubMed  Google Scholar 

  14. Mo, Z., Liu, Y., Li, C., Xu, L., Wen, L., Xian, Y., Lin, Z., Zhan, J., Chen, J., and Xu, F. (2017) Protective effect of SFE-CO2 of Ligusticum chuanxiong hort against D-galac-tose-induced injury in the mouse liver and kidney, Rejuven. Res., 20, 231–243; doi: https://doi.org/10.1089/rej.2016.1870.

    Article  CAS  Google Scholar 

  15. Li, W., Li, N., Sui, B., and Yang, D. (2017) Anti-aging effect of fullerenol on skin aging through derived stem cells in a mouse model, Exp. Ther. Med., 14, 5045–5050; doi: https://doi.org/10.3892/etm.2017.5163.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Uddin, M., Nishio, N., Ito, S., Suzuki, H., and Isobe, K. (2010) Toxic effects of D-galactose on thymus and spleen that resemble aging, J. Immunotoxicol., 7, 165–173; doi: https://doi.org/10.3109/15476910903510806.

    Article  CAS  PubMed  Google Scholar 

  17. Li, M., Ouyang, W., Li, J., Si, L., Li, X., Guo, J., and Li, H. (2016) Effects of kinetin on thymus and immune function of aging rats, Pakistan Vet. J., 36, 356–362.

    CAS  Google Scholar 

  18. Chaudhry, M., Velardi, E., Dudakov, J., and van den Brink, M. (2016) Thymus: the next (re)generation, Immunol. Rev., 271, 56–71; doi: https://doi.org/10.1111/imr.12418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cepeda, S., and Griffith, A. (2018) Thymic stromal cells: roles in atrophy and age-associated dysfunction of the thymus, Exp. Gerontol., 105, 113–117; doi: https://doi.org/10.1016/j.exger.2017.12.022.

    Article  CAS  PubMed  Google Scholar 

  20. Griffith, A., Venables, T., Shi, J., Farr, A., van Remmen, H., Szweda, L., Fallahi, M., Rabinovitch, P., and Petrie, H. (2015) Metabolic damage and premature thymus aging caused by stromal catalase deficiency, Cell. Rep., 12, 1071–1079; doi: https://doi.org/10.1016/j.celrep.2015.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dixit, V. (2010) Thymic fatness and approaches to enhance thymopoietic fitness in aging, Curr. Opin. Immunol., 22, 521–528; doi: https://doi.org/10.1016/j.coi.2010.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abramson, J., and Anderson, G. (2017) Thymic epithelial cells, Annu. Rev. Immunol., 35, 85–118; doi: https://doi.org/10.1146/annurev-immunol-051116-052320.

    Article  CAS  PubMed  Google Scholar 

  23. Franceschi, C., and Campisi, J. (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases, J. Gerontol. A Biol. Sci. Med. Sci., 69, Suppl. 1, pS4–S9; doi: https://doi.org/10.1093/gerona/glu057.

    Article  Google Scholar 

  24. Coder, B., Wang, H., Ruan, L., and Su, D. (2015) Thymic involution perturbs negative selection leading to autoreac-tive T-cells that induce chronic inflammation, J. Immunol., 194, 5825–5837; doi: https://doi.org/10.4049/jimmunol.1500082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Markle, J., and Fish, E. (2014) SeXX matters in immunity, Trends Immunol., 35, 97–104; doi: https://doi.org/10.1016/j.it.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  26. Rehman, S., Shah, S., Ali, T., Chung, J., and Kim, M. (2017) Anthocyanins reversed D-galactose-induced oxida-tive stress and neuroinflammation mediated cognitive impairment in adult rats, Mol. Neurobiol., 54, 255–271; doi: https://doi.org/10.1007/s12035-015-9604-5.

    Article  CAS  PubMed  Google Scholar 

  27. Cebe, T., Yanar, K., Atukeren, P., Ozan, T., Kuruc, A., Kunbaz, A., Sitar, M., Mengi, M., Aydin, M., and Esrefoglu, M. (2014) Comprehensive study of myocardial redox homeostasis in naturally- and mimetically-aged rats, Age (Dordr.), 36, 9728; doi: https://doi.org/10.1007/s11357-014-9728-y.

    Article  CAS  Google Scholar 

  28. Majumdar, S., and Nandi, D. (2018) Thymic atrophy: experimental studies and therapeutic interventions, Scand. J. Immunol., 87, 4–14; doi: https://doi.org/10.1111/sji.12618.

    Article  CAS  PubMed  Google Scholar 

  29. Purton, J., Monk, J., Liddicoat, D., Kyparissoudis, K., Sakkal, S., Richardson, S., Godfrey, D., and Cole, T. (2004) Expression of the glucocorticoid receptor from the 1A promoter correlates with T-lymphocyte sensitivity to glucocorticoid-induced cell death, J. Immunol., 173, 3816–3824; doi: https://doi.org/10.4049/jimmunol.173.6.3816.

    Article  CAS  PubMed  Google Scholar 

  30. Kurd, N., and Robey, E. (2016) T-Cell selection in the thy-mus: a spatial and temporal perspective, Immunol. Rev., 271, 114–126; doi: https://doi.org/10.1111/imr.12398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xing, Y., Wang, X., Jameson, S., and Hogquist, K. (2016) Late stages of T-cell maturation in the thymus involve NF-κB and tonic type I interferon signaling, Nat. Immunol., 17, 565–573; doi: https://doi.org/10.1038/ni.3419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klein, L., Kyewski, B., Allen, P., and Hogquist, K. (2014) Positive and negative selection of the T-cell repertoire: what thymocytes see (and don’t see), Nat. Rev. Immunol., 14, 377–391; doi: https://doi.org/10.1038/nri3667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malchow, S., Leventhal, D., Lee, V., Nishi, S., Socci, N., and Savage, P. (2016) AIRE enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage, Immunity, 44, 1102–1113; doi: https://doi.org/10.1016/j.immuni.2016.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takaba, H., and Takayanagi, H. (2017) The mechanisms of T cell selection in the thymus, Trends Immunol., 38, 805–816; doi: https://doi.org/10.1016/j.it.2017.07.010.

    Article  CAS  PubMed  Google Scholar 

  35. DeVoss, J., LeClair, N., Hou, Y., Grewal, N., Johannes, K., Lu, W., Yang, T., Meagher, C., Fong, L., Strauss, E., and Anderson, M. (2010) An autoimmune response to odorant binding protein 1a is associated with dry eye in the AIRE-deficient mouse, J. Immunol., 184, 4236–4246; doi: https://doi.org/10.4049/jimmunol.0902434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hubert, F., Kinkel, S., Crewther, P., Cannon, P., Webster, K., Link, M., Uibo, R., O’ Bryan, M., Meager, A., Forehan, S., Smyth, G., Mittaz, L., Antonarakis, S., Peterson, P., Heath, W., and Scott, H. (2009) AIRE-deficient C57BL/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype, J. Immunol., 182, 3902–3918; doi: https://doi.org/10.4049/jimmunol.0802124.

    Article  CAS  PubMed  Google Scholar 

  37. Oh, J., Wang, W., Thomas, R., and Su, D. (2017) Capacity of tTreg generation is not impaired in the atrophied thymus, PLoS Biol., 15, e2003352; doi: https://doi.org/10.1371/journal.pbio.2003352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the International Science Editing (http://www.international-scienceediting.com) for their assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. K. Zhu.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 6, pp. 795-807.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM18-334, April 29, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H.M., Wang, Y.J., Liu, X. et al. Defective Central Immune Tolerance Induced by High-Dose D-Galactose Resembles Aging. Biochemistry Moscow 84, 617–626 (2019). https://doi.org/10.1134/S000629791906004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791906004X

Keywords

Navigation