Abstract
D-Galactose (D-Gal) promotes accumulation of reactive oxygen species and formation of advanced glycation end-products, ultimately resulting in oxidative stress. D-Gal has been widely used to induce accelerated aging in anti-aging medical research. Although thymic epithelial cells are particularly sensitive to oxidative stress, there are few reports on the thymus changes accompanying D-Gal-induced aging in mice. To study the effect of D-Gal on rodent thymus, we investigated the degree of thymus atrophy and changes in the atrophy relative index in C57BL/6J mice following subcutaneous injection of D-Gal at different doses (200, 500, 1000 mg/kg per day) for 60 days. Compared with the vehicle-treated (0.9% saline) and young controls, D-Gal at doses of 500 and 1000 mg/kg per day led to a significant thymic atrophy; the latter dose caused atrophy similar to that observed in naturally aged (18-20-month-old) mice. Mice treated with high-dose D-Gal exhibited greater immunosenescence, defective central immune tolerance, increased levels of activated splenic immune cell, and chronic low-grade inflammation, i.e., outcomes similar to those observed in natural aging in mice. Taken together, our results indicate that mice treated with high-dose D-Gal may be a valid model for studying induced thymic atrophy and effects of aging on the immune system.
Abbreviations
- D-Gal:
-
D-galactose
- MDA:
-
malondialdehyde
- NS:
-
normal saline
- ROS:
-
reactive oxygen species
- RTE:
-
recent thymic emigrant
- SAMP:
-
senescence-accelerated mouse prone (model)
- SOD:
-
superoxide dismutase
- TEC:
-
thymic epithelial cell
- TRA:
-
tissue-restricted antigen
- tTreg:
-
thymic regulatory T cell
References
Sander, M., Oxlund, B., Jespersen, A., Krasnik, A., Mortensen, E., Westendorp, R., and Rasmussen, L. (2015) The challenges of human population ageing, Age Ageing, 44, 185–187; doi: https://doi.org/10.1093/ageing/afu189.
De Martinez, T. I., and de la Fuente, M. (2015) The role of Hsp70 in oxi-inflammaging and its use as a potential bio-marker of lifespan, Biogerontology, 16, 709–721; doi: https://doi.org/10.1007/s10522-015-9607-7.
Go, Y., and Jones, D. (2017) Redox theory of aging: implications for health and disease, Clin. Sci., 131, 1669–1688; doi: https://doi.org/10.1042/CS20160897.
Guzik, T., and Cosentino, F. (2018) Epigenetics and immunometabolism in diabetes and aging, Antioxid. Redox Signal., 29, 257–274; doi: https://doi.org/10.1089/ars.2017.7299.
Jones, D., and Sies, H. (2015) The redox code, Antioxid. Redox Signal., 23, 734–746; doi: https://doi.org/10.1089/ars.2015.6247.
Jones, D. (2016) Hydrogen peroxide and central redox theory for aerobic life: a tribute to Helmut Sies: scout, trail-blazer, and redox pioneer, Arch. Biochem. Biophys., 595, 13–18; doi: https://doi.org/10.1016/j.abb.2015.10.022.
Sies, H. (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress, Redox Biol., 11, 613–619; doi: https://doi.org/10.1016/j.redox.2016.12.035.
Shwe, T., Pratchayasakul, W., Chattipakorn, N., and Chattipakorn, S. (2018) Role of D-galactose-induced brain aging and its potential used for therapeutic interventions, Exp. Gerontol., 101, 13–36; doi: https://doi.org/10.1016/j.exger.2017.10.029.
Li, M., Guo, K., Adachi, Y., and Ikehara, S. (2016) Immune dysfunction associated with abnormal bone marrow-derived mesenchymal stroma cells in senescence accelerated mice, Int. J. Mol. Sci., 17, E183; doi: https://doi.org/10.3390/ijms17020183.
Currais, A., Farrokhi, C., Dargusch, R., Armando, A., Quehenberger, O., Schubert, D., and Maher, P. (2018) Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse, J. Gerontol. A Biol. Sci. Med. Sci., 73, 299–307; doi: https://doi.org/10.1093/gerona/glx104.
Morava, E. (2014) Galactose supplementation in phospho-glucomutase-1 deficiency: review and outlook for a novel treatable CDG, Mol. Genet. Metab., 112, 275–279; doi: https://doi.org/10.1016/j.ymgme.2014.06.002.
Bo-Htay, C., Palee, S., Apaijai, N., Chattipakorn, S., and Chattipakorn, N. (2018) Effects of D-galactose-induced aging on the heart and its potential interventions, J. Cell. Mol. Med., 22, 1392–1410; doi: https://doi.org/10.1111/jcmm.13472.
Wang, H., Hu, L., Li, L., Wu, X., Fan, Z., Zhang, C., Wang, J., Jia, J., and Wang, S. (2018) Inorganic nitrate alleviates the senescence-related decline in liver function, Sci. China Life Sci., 61, 24–34; doi: https://doi.org/10.1007/s11427-017-9207-x.
Mo, Z., Liu, Y., Li, C., Xu, L., Wen, L., Xian, Y., Lin, Z., Zhan, J., Chen, J., and Xu, F. (2017) Protective effect of SFE-CO2 of Ligusticum chuanxiong hort against D-galac-tose-induced injury in the mouse liver and kidney, Rejuven. Res., 20, 231–243; doi: https://doi.org/10.1089/rej.2016.1870.
Li, W., Li, N., Sui, B., and Yang, D. (2017) Anti-aging effect of fullerenol on skin aging through derived stem cells in a mouse model, Exp. Ther. Med., 14, 5045–5050; doi: https://doi.org/10.3892/etm.2017.5163.
Uddin, M., Nishio, N., Ito, S., Suzuki, H., and Isobe, K. (2010) Toxic effects of D-galactose on thymus and spleen that resemble aging, J. Immunotoxicol., 7, 165–173; doi: https://doi.org/10.3109/15476910903510806.
Li, M., Ouyang, W., Li, J., Si, L., Li, X., Guo, J., and Li, H. (2016) Effects of kinetin on thymus and immune function of aging rats, Pakistan Vet. J., 36, 356–362.
Chaudhry, M., Velardi, E., Dudakov, J., and van den Brink, M. (2016) Thymus: the next (re)generation, Immunol. Rev., 271, 56–71; doi: https://doi.org/10.1111/imr.12418.
Cepeda, S., and Griffith, A. (2018) Thymic stromal cells: roles in atrophy and age-associated dysfunction of the thymus, Exp. Gerontol., 105, 113–117; doi: https://doi.org/10.1016/j.exger.2017.12.022.
Griffith, A., Venables, T., Shi, J., Farr, A., van Remmen, H., Szweda, L., Fallahi, M., Rabinovitch, P., and Petrie, H. (2015) Metabolic damage and premature thymus aging caused by stromal catalase deficiency, Cell. Rep., 12, 1071–1079; doi: https://doi.org/10.1016/j.celrep.2015.07.008.
Dixit, V. (2010) Thymic fatness and approaches to enhance thymopoietic fitness in aging, Curr. Opin. Immunol., 22, 521–528; doi: https://doi.org/10.1016/j.coi.2010.06.010.
Abramson, J., and Anderson, G. (2017) Thymic epithelial cells, Annu. Rev. Immunol., 35, 85–118; doi: https://doi.org/10.1146/annurev-immunol-051116-052320.
Franceschi, C., and Campisi, J. (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases, J. Gerontol. A Biol. Sci. Med. Sci., 69, Suppl. 1, pS4–S9; doi: https://doi.org/10.1093/gerona/glu057.
Coder, B., Wang, H., Ruan, L., and Su, D. (2015) Thymic involution perturbs negative selection leading to autoreac-tive T-cells that induce chronic inflammation, J. Immunol., 194, 5825–5837; doi: https://doi.org/10.4049/jimmunol.1500082.
Markle, J., and Fish, E. (2014) SeXX matters in immunity, Trends Immunol., 35, 97–104; doi: https://doi.org/10.1016/j.it.2013.10.006.
Rehman, S., Shah, S., Ali, T., Chung, J., and Kim, M. (2017) Anthocyanins reversed D-galactose-induced oxida-tive stress and neuroinflammation mediated cognitive impairment in adult rats, Mol. Neurobiol., 54, 255–271; doi: https://doi.org/10.1007/s12035-015-9604-5.
Cebe, T., Yanar, K., Atukeren, P., Ozan, T., Kuruc, A., Kunbaz, A., Sitar, M., Mengi, M., Aydin, M., and Esrefoglu, M. (2014) Comprehensive study of myocardial redox homeostasis in naturally- and mimetically-aged rats, Age (Dordr.), 36, 9728; doi: https://doi.org/10.1007/s11357-014-9728-y.
Majumdar, S., and Nandi, D. (2018) Thymic atrophy: experimental studies and therapeutic interventions, Scand. J. Immunol., 87, 4–14; doi: https://doi.org/10.1111/sji.12618.
Purton, J., Monk, J., Liddicoat, D., Kyparissoudis, K., Sakkal, S., Richardson, S., Godfrey, D., and Cole, T. (2004) Expression of the glucocorticoid receptor from the 1A promoter correlates with T-lymphocyte sensitivity to glucocorticoid-induced cell death, J. Immunol., 173, 3816–3824; doi: https://doi.org/10.4049/jimmunol.173.6.3816.
Kurd, N., and Robey, E. (2016) T-Cell selection in the thy-mus: a spatial and temporal perspective, Immunol. Rev., 271, 114–126; doi: https://doi.org/10.1111/imr.12398.
Xing, Y., Wang, X., Jameson, S., and Hogquist, K. (2016) Late stages of T-cell maturation in the thymus involve NF-κB and tonic type I interferon signaling, Nat. Immunol., 17, 565–573; doi: https://doi.org/10.1038/ni.3419.
Klein, L., Kyewski, B., Allen, P., and Hogquist, K. (2014) Positive and negative selection of the T-cell repertoire: what thymocytes see (and don’t see), Nat. Rev. Immunol., 14, 377–391; doi: https://doi.org/10.1038/nri3667.
Malchow, S., Leventhal, D., Lee, V., Nishi, S., Socci, N., and Savage, P. (2016) AIRE enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage, Immunity, 44, 1102–1113; doi: https://doi.org/10.1016/j.immuni.2016.02.009.
Takaba, H., and Takayanagi, H. (2017) The mechanisms of T cell selection in the thymus, Trends Immunol., 38, 805–816; doi: https://doi.org/10.1016/j.it.2017.07.010.
DeVoss, J., LeClair, N., Hou, Y., Grewal, N., Johannes, K., Lu, W., Yang, T., Meagher, C., Fong, L., Strauss, E., and Anderson, M. (2010) An autoimmune response to odorant binding protein 1a is associated with dry eye in the AIRE-deficient mouse, J. Immunol., 184, 4236–4246; doi: https://doi.org/10.4049/jimmunol.0902434.
Hubert, F., Kinkel, S., Crewther, P., Cannon, P., Webster, K., Link, M., Uibo, R., O’ Bryan, M., Meager, A., Forehan, S., Smyth, G., Mittaz, L., Antonarakis, S., Peterson, P., Heath, W., and Scott, H. (2009) AIRE-deficient C57BL/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype, J. Immunol., 182, 3902–3918; doi: https://doi.org/10.4049/jimmunol.0802124.
Oh, J., Wang, W., Thomas, R., and Su, D. (2017) Capacity of tTreg generation is not impaired in the atrophied thymus, PLoS Biol., 15, e2003352; doi: https://doi.org/10.1371/journal.pbio.2003352.
Acknowledgements
The authors wish to thank the International Science Editing (http://www.international-scienceediting.com) for their assistance in the preparation of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Russian in Biokhimiya, 2019, Vol. 84, No. 6, pp. 795-807.
Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM18-334, April 29, 2019.
Rights and permissions
About this article
Cite this article
Du, H.M., Wang, Y.J., Liu, X. et al. Defective Central Immune Tolerance Induced by High-Dose D-Galactose Resembles Aging. Biochemistry Moscow 84, 617–626 (2019). https://doi.org/10.1134/S000629791906004X
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S000629791906004X