Hall-Stoodley, L., Costerton, J. W., and Stoodley, P. (2004) Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95–108; DOI: https://doi.org/10.1038/nrmicro821.
Article
CAS
PubMed
Google Scholar
Hall-Stoodley, L., and Stoodley, P. (2009) Evolving concepts in biofilm infections, Cell Microbiol., 11, 1034–1043; DOI: https://doi.org/10.1111/j.1462-5822.2009.01323.x.
Article
CAS
PubMed
Google Scholar
Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O. (2010) Antibiotic resistance of bacterial biofilms, Int. J. Antimicrob. Agents., 35, 322–332; DOI: https://doi.org/10.1016/j.ijan-timicag.2009.12.011.
Article
CAS
PubMed
Google Scholar
Jensen, P. O., Givskov, M., Bjarnsholt, T., and Moser, C. (2010) The immune system vs. Pseudomonas aeruginosa biofilms, FEMS Immunol. Med. Microbiol., 59, 292–305; DOI: https://doi.org/10.1111/j.1574-695X.2010.00706.x.
Article
CAS
PubMed
Google Scholar
Mah, T.-F. (2010) Biofilm-specific antibiotic resistance, Future Microbiol., 7, 1061–1072; DOI: https://doi.org/10.2217/fmb.12.76.
Article
CAS
Google Scholar
Costerton, J. W. (1999) Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318–1322; DOI: https://doi.org/10.1126/science.284.5418.1318.
Article
CAS
Google Scholar
Valle, J., Da Re, S., Henry, N., Fontaine, T., Balestrino, D., Latour-Lambert, P., and Ghigo, J.-M. (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide, Proc. Natl. Acad. Sci. USA, 103, 12558–12563; DOI: https://doi.org/10.1073/pnas.0605399103.
Article
CAS
PubMed
Google Scholar
Jiang, P., Li, J., Han, F., Duan, G., Lu, X., Gu, Y, and Yu, W. (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101, PLoS One, 6, e18514; DOI: https://doi.org/10.1371/journal.pone.0018514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanmani, P., Satish Kumar, R., Yuvaraj, N., Paari, K. A., Pattukumar, V., and Arul, V. (2011) Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro, Bioresour. Technol., 102, 4827–4833; DOI: https://doi.org/10.1016/j.biortech.2010.12.118.
Article
CAS
PubMed
Google Scholar
Sayem, S. M. A., Manzo, E., Ciavatta, L., Tramice, A., Cordone, A., Zanfardino, A., De Felice, M., and Varcamonti, M. (2011) Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis, Microb. Cell. Fact., 10, 74; DOI: https://doi.org/10.1186/1475-2859-10-74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spano, A., Lagana, P., Visalli, G., Maugeri, T. L., and Gugliandolo, C. (2016) In vitro antibiofilm activity of an exopolysaccharide from the marine thermophilic Bacillus licheniformis T14, Curr. Microbiol., 72, 518–528; DOI: https://doi.org/10.1007/s00284-015-0981-9.
Article
CAS
PubMed
Google Scholar
Wu, S., Liu, G., Jin, W., Xiu, P., and Sun, C. (2016) Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa, Front. Microbiol., 7, 102; DOI: https://doi.org/10.3389/fmicb.2016.00102.
CAS
PubMed
PubMed Central
Google Scholar
Brian-Jaisson, F., Molmeret, M., Fahs, A., Guentas-Dombrowsky, L., Culioli, G., Blache, Y., Cerantola, S., and Ortalo-Magne, A. (2016) Characterization and anti-biofilm activity of extracellular polymeric substances produced by the marine biofilm-forming bacterium Pseudoalteromonas ulvae strain TC14, Biofouling, 32, 547–560; DOI: https://doi.org/10.1080/08927014.2016.1164845.
Article
CAS
PubMed
Google Scholar
Papa, R., Parrilli, E., Sannino, F., Barbato, G., Tutino, M. L., Artini, M., and Selan, L. (2013) Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125, Res. Microbiol., 164, 450–456; DOI: https://doi.org/10.1016/j.resmic.2013.01.010.
Article
CAS
PubMed
Google Scholar
Kanmani, P., Suganya, K., Satish Kumar, R., Yuvaraj, N., Pattukumar, V., Paari, K. A., and Arul, V. (2013) Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish, Appl. Biochem. Biotechnol., 169, 1001–1015; DOI: https://doi.org/10.1007/s12010-012-0074-1.
Article
CAS
PubMed
Google Scholar
Kavita, K., Singh, V. K., Mishra, A., and Jha, B. (2014) Characterization and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis, Carbohydr. Polym., 101, 29–35; DOI: https://doi.org/10.1016/j.carbpol.2013.08.099.
Article
CAS
PubMed
Google Scholar
Li, Y, Li, Q., Hao, D., Jiang, D., Luo, Y., Liu, Y., and Zhao, Z. (2015) Production, purification, and antibiofilm activity of a novel exopolysaccharide from Arthrobacter sp. B4, Prep. Biochem. Biotechnol., 45, 192–204; DOI: https://doi.org/10.1080/10826068.2014.907180.
Article
CAS
PubMed
Google Scholar
Pradeepa, Shetty, A. D., Matthews, K., Hegde, A. R., Akshatha, B., Mathias, A. B., Mutalik, S., and Vidya, S. M. (2016) Multidrug resistant pathogenic bacterial biofilm inhibition by Lactobacillus plantarum exopolysaccharide, Bioact. Carbohydr. Diet Fibre, 8, 7–14; DOI: https://doi.org/10.1016/j.bcdf.2016.06.002.
Article
CAS
Google Scholar
Rendueles, O., Travier, L., and Latour-Lambert, P. (2011) Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharide, MBio, 2, e00043–11; DOI: https://doi.org/10.1128/mBio.00043-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bendaoud, M., Vinogradov, E., Balashova, N. V., Kadouri, D. E., Kachlany, S. C., and Kaplan, J. B. (2011) Broad-spectrum biofilm inhibition by Kingella kingae exopolysaccharide, J. Bacteriol., 193, 3879–3886; DOI: https://doi.org/10.1128/JB.00311-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dos Santos Goncalves, M., Delattre, C., Balestrino, D., Charbonnel, N., Elboutachfaiti, R., Wadouachi, A., Badel, S., Bernardi, T., Michaud, P., and Forestier, C. (2014) Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide, PLoS One, 9, e99995; DOI: https://doi.org/10.1371/journal.pone.0099995.
Article
CAS
PubMed Central
Google Scholar
Grishin, A., Karyagina, A. S., Tiganova, I. G., Dobrynina, O. Y., Bolshakova, T. N., Boksha, I. S., Alexeyeva, N. V., Stepanova, T. V., Lunin, V. G., Chuchalin, A. G., and Ginzburg, A. L. (2013) Inhibition of Pseudomonas aeruginosa biofilm formation by LecA-binding polysaccharides, Int. J. Antimicrob. Agents, 42, 471–472; DOI: https://doi.org/10.1016/j.ijantimicag.2013.07.003.
Article
CAS
PubMed
Google Scholar
Vazquez-Rodriguez, A., Vasto-Anzaldo, X. G., Barboza Perez, D., Vázquez-Garza, E., Chapoy-Villanueva, H., Garcia-Rivas, G., Garza-Cervantes, J., Gomez-Lugo, J. J., Gomez-Loredo, A. E., Gonzalez, M. T. G., Zarate, X., and Morones-Ramirez, J. R. (2018) Microbial competition of Rhodotorula mucilaginosa UANL-001L and E. coli increase biosynthesis of non-toxic exopolysaccharide with applications as a wide-spectrum antimicrobial, Sci. Rep., 8, 798; DOI: https://doi.org/10.1038/s41598-017-17908-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doghri, I., Lavaud, J., Dufour, A., Bazire, A., Lanneluc, I., and Sable, S. (2017) Cell-bound exopolysaccharides from an axenic culture of the intertidal mudflat Navicula phyllepta diatom affect biofilm formation by benthic bacteria, J. Appl. Phycol., 29, 165–177; DOI: https://doi.org/10.1007/s10811-016-0943-z.
Article
CAS
Google Scholar
Bernal, P., and Llamas, M. A. (2012) Promising biotechnological applications of antibiofilm exopolysaccharides, Microb. Biotechnol., 5, 670–673; DOI: https://doi.org/10.1111/j.1751-7915.2012.00359.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rendueles, O., Kaplan, J. B., and Ghigo, J.-M. (2013) Antibiofilm polysaccharides, Environ. Microbiol., 15, 334–346; DOI: https://doi.org/10.1111/j.1462-2920.2012.02810.x.
Article
CAS
PubMed
Google Scholar
Kim, Y., Oh, S., and Kim, S. H. (2009) Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7, Biochem. Biophys. Res. Commun., 379, 324–329; DOI: https://doi.org/10.1016/j.bbrc.2008.12.053.
Article
CAS
PubMed
Google Scholar
Karwacki, M. T., Kadouri, D. E., Bendaoud, M., Izano, E. A., Sampathkumar, V., Inzana, T. J., and Kaplan, J. B. (2013) Antibiofilm activity of Actinobacillus pleuropneumoniae serotype 5 capsular polysaccharide, PLoS One, 8, e63844; DOI: https://doi.org/10.1371/journal.pone.0063844.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Toole, G. A. (2011) Microtiter dish biofilm formation assay, J. Vis. Exp., 47, 2437; DOI: https://doi.org/10.3791/2437.
Google Scholar
Mah, T.-F. (2014) Establishing the minimal bactericidal concentration of an antimicrobial agent for planktonic cells (MBC-P) and biofilm cells (MBC-B), J. Vis. Exp., 83, e50854; DOI: https://doi.org/10.3791/50854.
Google Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012) Fiji: an open-source platform for biological-image analysis, Nat. Meth., 9, 676–682; DOI: https://doi.org/10.1038/nmeth.2019.
Article
CAS
Google Scholar
Hiramatsu, Y., Saito, M., Otsuka, N., Suzuki, E., Watanabe, M., Shibayama, K., and Kamachi, K. (2016) BipA is associated with preventing autoagglutination and promoting biofilm formation in Bordetella holmesii, PLoS One, 11, e0159999; DOI: https://doi.org/10.1371/journal.pone.0159999.
Article
CAS
PubMed
Google Scholar
Imberty, A., Wimmerova, M., Mitchell, E. P., and Gilboa-Garber, N. (2004) Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition, Microbes Infect., 6, 221–228; DOI: https://doi.org/10.1016/j.micinf.2003.10.016.
Article
CAS
PubMed
Google Scholar
Grishin, A. V., Krivozubov, M. S., Karyagina, A. S., and Gintsburg, A. L. (2015) Pseudomonas aeruginosa lectins as targets for novel antibacterials, Acta Naturae, 7, 29–41.
CAS
Article
Google Scholar
Titz, A. (2014) Carbohydrate-based anti-virulence compounds against chronic Pseudomonas aeruginosa infections with a focus on small molecules, in Carbohydrates as Drugs. Topics in Medicinal Chemistry, Vol. 12 (Seeberger, P., and Rademacher, C., eds.) Springer, Cambridge, pp. 169–186; DOI: https://doi.org/10.1007/7355_2014_44.
Google Scholar
Boukerb, A. M., Rousset, A., Galanos, N., Mear, J.-B., Thepaut, M., Grandjean, T., Gillon, E., Cecioni, S., Abderrahmen, C., Faure, K., Redelberger, D., Kipnis, E., Dessein, R., Havet, S., Darblade, B., Matthews, S. E., de Bentzmann, S., Guery, B., Cournoyer, B., Imberty, A., and Vidal, S. (2014) Antiadhesive properties of glycoclusters against Pseudomonas aeruginosa lung infection, J. Med. Chem., 57, 10275–10289; DOI: https://doi.org/10.1021/jm500038p.
Article
CAS
PubMed
Google Scholar
Beaudoin, T., Yau, Y. C. W., Stapleton, P. J., Gong, Y., Wang, P. W., Guttman, D. S., and Water, V. (2017) Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance, NPJ Biofilms Microbiomes, 3, 25; DOI: https://doi.org/10.1038/s41522-017-0035-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armbruster, C. R., Wolter, D. J., Mishra, M., Hayden, H. S., Radey, M. C., Merrihew, G., Maccoss, M. J., Burns, J., Wozniak, D. J., Parsek, M. R., and Hoffman, L. R. (2016) Staphylococcus aureus protein A mediates interspecies interactions at the cell surface of Pseudomonas aeruginosa, MBio, 7, e00538–16; DOI: https://doi.org/10.1128/mBio.00538-16.
Article
CAS
PubMed
PubMed Central
Google Scholar