Skip to main content

Polysaccharide Galactan Inhibits Pseudomonas aeruginosa Biofilm Formation but Protects Pre-formed Biofilms from Antibiotics

Abstract

Microorganisms residing within a biofilm become more tolerant to antibiotics and other types of adverse impact, and biofilm formation by pathogenic bacteria is an important problem of current medicine. Polysaccharides that prevent biofilm formation are among the promising candidates to help tackle this problem. Earlier we demonstrated the ability of a potato polysaccharide galactan to inhibit biofilm formation by a Pseudomonas aeruginosa clinical isolate. Here we investigate the effect of potato galactan on P. aeruginosa biofilms in more detail. Microscopic analysis indicated that the galactan did not interfere with the adhesion of bacterial cells to the substrate but prevented the build-up of bacterial biomass. Moreover, the galactan not only inhibited biofilm formation, but partially destroyed pre-formed biofilms. Presumably, this activity of the galactan was due to the excessive aggregation of bacterial cells, which prohibited the formation and maintenance of proper biofilm architecture, or due to some other mechanisms of biofilm structure remodeling. This led to an unexpected effect, i.e., P. aeruginosa biofilms treated with an antibiotic and the galactan retained more viable bacterial cells compared to biofilms treated with the antibiotic alone. Galactan is the first polysaccharide demonstrated to exert such effect on bacterial biofilms.

This is a preview of subscription content, access via your institution.

Abbreviations

CBD:

Calgary biofilm device

CFU:

colony-forming unit

MBC:

minimum bactericidal concentration

MBEC:

minimum biofilm eradication concentration

MIC:

minimum inhibitory concentration

PAO1:

Pseudomonas aeruginosa PAO1 laboratory strain.

References

  1. Hall-Stoodley, L., Costerton, J. W., and Stoodley, P. (2004) Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95–108; DOI: https://doi.org/10.1038/nrmicro821.

    Article  CAS  PubMed  Google Scholar 

  2. Hall-Stoodley, L., and Stoodley, P. (2009) Evolving concepts in biofilm infections, Cell Microbiol., 11, 1034–1043; DOI: https://doi.org/10.1111/j.1462-5822.2009.01323.x.

    Article  CAS  PubMed  Google Scholar 

  3. Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O. (2010) Antibiotic resistance of bacterial biofilms, Int. J. Antimicrob. Agents., 35, 322–332; DOI: https://doi.org/10.1016/j.ijan-timicag.2009.12.011.

    Article  CAS  PubMed  Google Scholar 

  4. Jensen, P. O., Givskov, M., Bjarnsholt, T., and Moser, C. (2010) The immune system vs. Pseudomonas aeruginosa biofilms, FEMS Immunol. Med. Microbiol., 59, 292–305; DOI: https://doi.org/10.1111/j.1574-695X.2010.00706.x.

    Article  CAS  PubMed  Google Scholar 

  5. Mah, T.-F. (2010) Biofilm-specific antibiotic resistance, Future Microbiol., 7, 1061–1072; DOI: https://doi.org/10.2217/fmb.12.76.

    Article  CAS  Google Scholar 

  6. Costerton, J. W. (1999) Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318–1322; DOI: https://doi.org/10.1126/science.284.5418.1318.

    Article  CAS  Google Scholar 

  7. Valle, J., Da Re, S., Henry, N., Fontaine, T., Balestrino, D., Latour-Lambert, P., and Ghigo, J.-M. (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide, Proc. Natl. Acad. Sci. USA, 103, 12558–12563; DOI: https://doi.org/10.1073/pnas.0605399103.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, P., Li, J., Han, F., Duan, G., Lu, X., Gu, Y, and Yu, W. (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101, PLoS One, 6, e18514; DOI: https://doi.org/10.1371/journal.pone.0018514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kanmani, P., Satish Kumar, R., Yuvaraj, N., Paari, K. A., Pattukumar, V., and Arul, V. (2011) Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro, Bioresour. Technol., 102, 4827–4833; DOI: https://doi.org/10.1016/j.biortech.2010.12.118.

    Article  CAS  PubMed  Google Scholar 

  10. Sayem, S. M. A., Manzo, E., Ciavatta, L., Tramice, A., Cordone, A., Zanfardino, A., De Felice, M., and Varcamonti, M. (2011) Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis, Microb. Cell. Fact., 10, 74; DOI: https://doi.org/10.1186/1475-2859-10-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spano, A., Lagana, P., Visalli, G., Maugeri, T. L., and Gugliandolo, C. (2016) In vitro antibiofilm activity of an exopolysaccharide from the marine thermophilic Bacillus licheniformis T14, Curr. Microbiol., 72, 518–528; DOI: https://doi.org/10.1007/s00284-015-0981-9.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, S., Liu, G., Jin, W., Xiu, P., and Sun, C. (2016) Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa, Front. Microbiol., 7, 102; DOI: https://doi.org/10.3389/fmicb.2016.00102.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Brian-Jaisson, F., Molmeret, M., Fahs, A., Guentas-Dombrowsky, L., Culioli, G., Blache, Y., Cerantola, S., and Ortalo-Magne, A. (2016) Characterization and anti-biofilm activity of extracellular polymeric substances produced by the marine biofilm-forming bacterium Pseudoalteromonas ulvae strain TC14, Biofouling, 32, 547–560; DOI: https://doi.org/10.1080/08927014.2016.1164845.

    Article  CAS  PubMed  Google Scholar 

  14. Papa, R., Parrilli, E., Sannino, F., Barbato, G., Tutino, M. L., Artini, M., and Selan, L. (2013) Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125, Res. Microbiol., 164, 450–456; DOI: https://doi.org/10.1016/j.resmic.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  15. Kanmani, P., Suganya, K., Satish Kumar, R., Yuvaraj, N., Pattukumar, V., Paari, K. A., and Arul, V. (2013) Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish, Appl. Biochem. Biotechnol., 169, 1001–1015; DOI: https://doi.org/10.1007/s12010-012-0074-1.

    Article  CAS  PubMed  Google Scholar 

  16. Kavita, K., Singh, V. K., Mishra, A., and Jha, B. (2014) Characterization and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis, Carbohydr. Polym., 101, 29–35; DOI: https://doi.org/10.1016/j.carbpol.2013.08.099.

    Article  CAS  PubMed  Google Scholar 

  17. Li, Y, Li, Q., Hao, D., Jiang, D., Luo, Y., Liu, Y., and Zhao, Z. (2015) Production, purification, and antibiofilm activity of a novel exopolysaccharide from Arthrobacter sp. B4, Prep. Biochem. Biotechnol., 45, 192–204; DOI: https://doi.org/10.1080/10826068.2014.907180.

    Article  CAS  PubMed  Google Scholar 

  18. Pradeepa, Shetty, A. D., Matthews, K., Hegde, A. R., Akshatha, B., Mathias, A. B., Mutalik, S., and Vidya, S. M. (2016) Multidrug resistant pathogenic bacterial biofilm inhibition by Lactobacillus plantarum exopolysaccharide, Bioact. Carbohydr. Diet Fibre, 8, 7–14; DOI: https://doi.org/10.1016/j.bcdf.2016.06.002.

    Article  CAS  Google Scholar 

  19. Rendueles, O., Travier, L., and Latour-Lambert, P. (2011) Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharide, MBio, 2, e00043–11; DOI: https://doi.org/10.1128/mBio.00043-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bendaoud, M., Vinogradov, E., Balashova, N. V., Kadouri, D. E., Kachlany, S. C., and Kaplan, J. B. (2011) Broad-spectrum biofilm inhibition by Kingella kingae exopolysaccharide, J. Bacteriol., 193, 3879–3886; DOI: https://doi.org/10.1128/JB.00311-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dos Santos Goncalves, M., Delattre, C., Balestrino, D., Charbonnel, N., Elboutachfaiti, R., Wadouachi, A., Badel, S., Bernardi, T., Michaud, P., and Forestier, C. (2014) Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide, PLoS One, 9, e99995; DOI: https://doi.org/10.1371/journal.pone.0099995.

    Article  CAS  PubMed Central  Google Scholar 

  22. Grishin, A., Karyagina, A. S., Tiganova, I. G., Dobrynina, O. Y., Bolshakova, T. N., Boksha, I. S., Alexeyeva, N. V., Stepanova, T. V., Lunin, V. G., Chuchalin, A. G., and Ginzburg, A. L. (2013) Inhibition of Pseudomonas aeruginosa biofilm formation by LecA-binding polysaccharides, Int. J. Antimicrob. Agents, 42, 471–472; DOI: https://doi.org/10.1016/j.ijantimicag.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  23. Vazquez-Rodriguez, A., Vasto-Anzaldo, X. G., Barboza Perez, D., Vázquez-Garza, E., Chapoy-Villanueva, H., Garcia-Rivas, G., Garza-Cervantes, J., Gomez-Lugo, J. J., Gomez-Loredo, A. E., Gonzalez, M. T. G., Zarate, X., and Morones-Ramirez, J. R. (2018) Microbial competition of Rhodotorula mucilaginosa UANL-001L and E. coli increase biosynthesis of non-toxic exopolysaccharide with applications as a wide-spectrum antimicrobial, Sci. Rep., 8, 798; DOI: https://doi.org/10.1038/s41598-017-17908-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doghri, I., Lavaud, J., Dufour, A., Bazire, A., Lanneluc, I., and Sable, S. (2017) Cell-bound exopolysaccharides from an axenic culture of the intertidal mudflat Navicula phyllepta diatom affect biofilm formation by benthic bacteria, J. Appl. Phycol., 29, 165–177; DOI: https://doi.org/10.1007/s10811-016-0943-z.

    Article  CAS  Google Scholar 

  25. Bernal, P., and Llamas, M. A. (2012) Promising biotechnological applications of antibiofilm exopolysaccharides, Microb. Biotechnol., 5, 670–673; DOI: https://doi.org/10.1111/j.1751-7915.2012.00359.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rendueles, O., Kaplan, J. B., and Ghigo, J.-M. (2013) Antibiofilm polysaccharides, Environ. Microbiol., 15, 334–346; DOI: https://doi.org/10.1111/j.1462-2920.2012.02810.x.

    Article  CAS  PubMed  Google Scholar 

  27. Kim, Y., Oh, S., and Kim, S. H. (2009) Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7, Biochem. Biophys. Res. Commun., 379, 324–329; DOI: https://doi.org/10.1016/j.bbrc.2008.12.053.

    Article  CAS  PubMed  Google Scholar 

  28. Karwacki, M. T., Kadouri, D. E., Bendaoud, M., Izano, E. A., Sampathkumar, V., Inzana, T. J., and Kaplan, J. B. (2013) Antibiofilm activity of Actinobacillus pleuropneumoniae serotype 5 capsular polysaccharide, PLoS One, 8, e63844; DOI: https://doi.org/10.1371/journal.pone.0063844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Toole, G. A. (2011) Microtiter dish biofilm formation assay, J. Vis. Exp., 47, 2437; DOI: https://doi.org/10.3791/2437.

    Google Scholar 

  30. Mah, T.-F. (2014) Establishing the minimal bactericidal concentration of an antimicrobial agent for planktonic cells (MBC-P) and biofilm cells (MBC-B), J. Vis. Exp., 83, e50854; DOI: https://doi.org/10.3791/50854.

    Google Scholar 

  31. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012) Fiji: an open-source platform for biological-image analysis, Nat. Meth., 9, 676–682; DOI: https://doi.org/10.1038/nmeth.2019.

    Article  CAS  Google Scholar 

  32. Hiramatsu, Y., Saito, M., Otsuka, N., Suzuki, E., Watanabe, M., Shibayama, K., and Kamachi, K. (2016) BipA is associated with preventing autoagglutination and promoting biofilm formation in Bordetella holmesii, PLoS One, 11, e0159999; DOI: https://doi.org/10.1371/journal.pone.0159999.

    Article  CAS  PubMed  Google Scholar 

  33. Imberty, A., Wimmerova, M., Mitchell, E. P., and Gilboa-Garber, N. (2004) Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition, Microbes Infect., 6, 221–228; DOI: https://doi.org/10.1016/j.micinf.2003.10.016.

    Article  CAS  PubMed  Google Scholar 

  34. Grishin, A. V., Krivozubov, M. S., Karyagina, A. S., and Gintsburg, A. L. (2015) Pseudomonas aeruginosa lectins as targets for novel antibacterials, Acta Naturae, 7, 29–41.

    CAS  Article  Google Scholar 

  35. Titz, A. (2014) Carbohydrate-based anti-virulence compounds against chronic Pseudomonas aeruginosa infections with a focus on small molecules, in Carbohydrates as Drugs. Topics in Medicinal Chemistry, Vol. 12 (Seeberger, P., and Rademacher, C., eds.) Springer, Cambridge, pp. 169–186; DOI: https://doi.org/10.1007/7355_2014_44.

    Google Scholar 

  36. Boukerb, A. M., Rousset, A., Galanos, N., Mear, J.-B., Thepaut, M., Grandjean, T., Gillon, E., Cecioni, S., Abderrahmen, C., Faure, K., Redelberger, D., Kipnis, E., Dessein, R., Havet, S., Darblade, B., Matthews, S. E., de Bentzmann, S., Guery, B., Cournoyer, B., Imberty, A., and Vidal, S. (2014) Antiadhesive properties of glycoclusters against Pseudomonas aeruginosa lung infection, J. Med. Chem., 57, 10275–10289; DOI: https://doi.org/10.1021/jm500038p.

    Article  CAS  PubMed  Google Scholar 

  37. Beaudoin, T., Yau, Y. C. W., Stapleton, P. J., Gong, Y., Wang, P. W., Guttman, D. S., and Water, V. (2017) Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance, NPJ Biofilms Microbiomes, 3, 25; DOI: https://doi.org/10.1038/s41522-017-0035-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Armbruster, C. R., Wolter, D. J., Mishra, M., Hayden, H. S., Radey, M. C., Merrihew, G., Maccoss, M. J., Burns, J., Wozniak, D. J., Parsek, M. R., and Hoffman, L. R. (2016) Staphylococcus aureus protein A mediates interspecies interactions at the cell surface of Pseudomonas aeruginosa, MBio, 7, e00538–16; DOI: https://doi.org/10.1128/mBio.00538-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. I. G. Tiganova for P. aeruginosa PAO1 strain, Dr. O. Yu. Dobrynina for P. aeruginosa isolate 216, and Dr. Yu. M. Romanova for kindly providing LIVE/DEAD dyes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Grishin or A. S. Karyagina.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grishin, A.V., Karyagina, A.S. Polysaccharide Galactan Inhibits Pseudomonas aeruginosa Biofilm Formation but Protects Pre-formed Biofilms from Antibiotics. Biochemistry Moscow 84, 509–519 (2019). https://doi.org/10.1134/S0006297919050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919050055

Keywords

  • biofilm
  • galactan
  • Pseudomonas aeruginosa
  • polysaccharide
  • antibiotics
  • tolerance