Skip to main content

The Gln3 Transcriptional Regulator of Saccharomyces cerevisiae Manifests Prion-Like Properties upon Overproduction

Abstract

Prions are proteins that can exist under the same conditions in two or more conformations, at least one of them is infectious. Usually, acquisition of infectious prion conformation is associated with the formation of amyloids–protein aggregates with a characteristic spatial structure. About 10 prions have been identified in the yeast Saccharomyces cerevisiae. The Gln3 protein, which is one of the key regulators of nitrogen metabolism in S. cerevisiae, contains an amyloidogenic region manifesting prion-like properties. The prion properties of the full-length Gln3 have not been studied. We have found that the amyloidogenic region of Gln3 acts as a template and initiates aggregation of the full-length Gln3 in the presence of the [PIN+] prion when Gln3 is overexpressed. Full-length Gln3 in its aggregated form manifests prion-like properties, including infectivity and dependence on the anti-prion agents; however, unlike other known yeast prions, prion-like state of Gln3 is observed only upon the protein overproduction. Here, we suggest the term “conditional prions” for proteins, whose prion state is maintained exclusively under non-physiological conditions.

This is a preview of subscription content, access via your institution.

Abbreviations

CFP:

cyan fluorescent protein

DAPI:

4′,6-diamidino-2-phenylindole

FOA:

5-fluoroorotic acid

Gln3QN:

asparagine/glutamine-rich fragment of Gln3 protein (a.a. 166-242)

GuHCl:

guanidine hydrochloride

PCR:

polymerase chain reaction

[PIN +]:

prion isoform of Rnq1 protein

PMSF:

phenylmethylsulfonyl fluoride

YFP:

yellow fluorescent protein

References

  1. 1.

    Alberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins, Cell, 137, 146–158, doi: https://doi.org/10.1016/j.cell.2009.02.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Roberts, B. T., and Wickner, R. B. (2003) Heritable activity: a prion that propagates by covalent autoactivation, Genes Dev., 17, 2083–2087.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Bolton, D. C., McKinley, M. P., and Prusiner, S. B. (1982) Identification of a protein that purifies with the scrapie prion, Science, 218, 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Prusiner, S. B., and Scott, M. R. (1997) Genetics of prions, Annu. Rev. Genet., 31, 139–175.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Wickner, R. B. (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae, Science, 264, 566–569, doi: https://doi.org/10.1126/science.7909170.

    CAS  PubMed  Google Scholar 

  6. 6.

    Derkatch, I. L., Bradley, M. E., Hong, J. Y., and Liebman, S. W. (2001) Prions affect the appearance of other prions: the story of [PIN+], Cell, 106, 171–182, doi: https://doi.org/10.1016/S0092-8674(01)00427-5.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Du, Z., Park, K. K.–W., Yu, H., Fan, Q., and Li, L. (2008) Newly identified prion linked to the chromatin–remodeling factor Swi1 in Saccharomyces cerevisiae, Nat. Genet., 40, 460–465, doi: https://doi.org/10.1038/ng.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Patel, B. K., Gavin–Smyth, J., and Liebman, S. W. (2009) The yeast global transcriptional co–repressor protein Cyc8 can propagate as a prion, Nat. Cell Biol., 11, 344–349, doi: https://doi.org/10.1038/ncb1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Suzuki, G., Shimazu, N., and Tanaka, M. (2012) A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress, Science, 336, 355–359, doi: https://doi.org/10.1126/science.1219491.

    CAS  Google Scholar 

  10. 10.

    Osherovich, L. Z., and Weissman, J. S. (2001) Multiple Gln/Asn–rich prion domains confer susceptibility to induction of the yeast [PSI+] prion, Cell, 106, 183–194, doi: https://doi.org/10.1016/S0092-8674(01)00440-8.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Michelitsch, M. D., and Weissman, J. S. (2000) A census of glutamine/asparagine–rich regions: implications for their conserved function and the prediction of novel prions, Proc. Natl. Acad. Sci. USA, 97, 11910–11915, doi: https://doi.org/10.1073/pnas.97.22.11910.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Harrison, P. M., and Gerstein, M. (2003) A method to assess compositional bias in biological sequences and its application to prion–like glutamine/asparagine–rich domains in eukaryotic proteomes, Genome Biol., 4, R40, doi: https://doi.org/10.1186/gb-2003-4-6-r40.

    Google Scholar 

  13. 13.

    Nizhnikov, A. A., Antonets, K. S., Bondarev, S. A., Inge–Vechtomov, S. G., and Derkatch, I. L. (2016) Prions, amyloids, and RNA: pieces of a puzzle, Prion, 10, 182–206, doi: https://doi.org/10.1080/19336896.2016.1181253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tycko, R., and Wickner, R. B. (2013) Molecular structures of amyloid and prion fibrils: consensus versus controversy, Acc. Chem. Res., 46, 1487–1496, doi: https://doi.org/10.1021/ar300282r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wickner, R. B., Shewmaker, F., Edskes, H., Kryndushkin, D., Nemecek, J., McGlinchey, R., Bateman, D., and Winchester, C. L. (2010) Prion amyloid structure explains templating: how proteins can be genes, FEMS Yeast Res., 10, 980–991, doi: https://doi.org/10.1111/j.1567-1364.2010.00666.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Romanova, N. V., and Chernoff, Y. O. (2009) Hsp104 and prion propagation, Protein Pept. Lett., 16, 598–605, doi: https://doi.org/10.2174/092986609788490078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Liebman, S. W., and Chernoff, Y. O. (2012) Prions in yeast, Genetics, 191, 1041–1072, doi: https://doi.org/10.1534/genet-ics.111.137760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Chernova, T. A., Wilkinson, K. D., and Chernoff, Y. O. (2014) Physiological and environmental control of yeast prions, FEMS Microbiol. Rev., 38, 326–344, doi: https://doi.org/10.1111/1574-6976.12053.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Wickner, R. B., Shewmaker, F. P., Bateman, D. A., Edskes, H. K., Gorkovskiy, A., Dayani, Y., and Bezsonov, E. E. (2015) Yeast prions: structure, biology, and prion–handling systems, Microbiol. Mol. Biol. Rev., 79, 1–17, doi: https://doi.org/10.1128/MMBR.00041-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wright, R. E., and Lederberg, J. (1957) Extranuclear transmission in yeast heterokaryons, Proc. Natl. Acad. Sci. USA, 43, 919–923.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Zakharov, I. A., and Yarovoy, B. P. (1977) Cytoduction as a new tool in studying the cytoplasmic heredity in yeast, Mol. Cell. Biochem., 14, 15–18.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J. S. (2004) Conformational variations in an infectious protein determine prion strain differences, Nature, 428, 323–328, doi: https://doi.org/10.1038/nature02392.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Cox, K., Rai, R., Distler, M., Daugherty, J. R., Coffman, J. A., and Cooper, T. G. (2000) Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p, J. Biol. Chem., 275, 17611–17618, doi: https://doi.org/10.1074/jbc.M001648200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kulkarni, A. A., Abul–Hamd, A. T., Rai, R., El Berry, H., and Cooper, T. G. (2001) Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae, J. Biol. Chem., 276, 32136–32144, doi: https://doi.org/10.1074/jbc.M104580200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Nizhnikov, A. A., Kondrashkina, A. M., Antonets, K. S., and Galkin, A. P. (2014) Overexpression of genes encoding asparagine–glutamine–rich transcriptional factors causes nonsense suppression in Saccharomyces cerevisiae, Russ. J. Genet. Appl. Res., 4, 122–130, doi: https://doi.org/10.1134/S2079059714020051.

    Article  Google Scholar 

  26. 26.

    Nizhnikov, A. A., Antonets, K. S., Inge–Vechtomov, S. G., and Derkatch, I. L. (2014) Modulation of efficiency oftranslation termination in Saccharomyces cerevisiae: turning nonsense into sense, Prion, 8, 247–260, doi: https://doi.org/10.4161/pri.29851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Matveenko, A. G., Belousov, M. V., Bondarev, S. A., Moskalenko, S. E., and Zhouravleva, G. A. (2016) Identification of new genes that affect [PSI+] prion toxicity in Saccharomyces cerevisiae yeast, Mol. Biol., 50, 710–718, doi: https://doi.org/10.1134/S0026893316050113.

    Article  CAS  Google Scholar 

  28. 28.

    Antonets, K. S., Sargsyan, H. M., and Nizhnikov, A. A. (2016) A glutamine/asparagine–rich fragment of Gln3, but not the full–length protein, aggregates in Saccharomyces cerevisiae, Biochemistry (Moscow), 81, 407–413, doi: https://doi.org/10.1134/S0006297916040118.

    Article  CAS  Google Scholar 

  29. 29.

    Kaiser, C., Michaelis, S., Mitchell, A., and Cold Spring Harbor Laboratory (1994) Methods in Yeast Genetics: a Cold Spring Harbor Laboratory Course Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  30. 30.

    Zakharov, I. A., Kozhin, S. A., Kozhina, T. N., and Fedorova, I. V. (1976) Collection of Techniques for Genetics of Yeast Saccharomycetes [in Russian], Nauka, Leningrad.

    Google Scholar 

  31. 31.

    Nizhnikov, A. A., Ryzhova, T. A., Volkov, K. V., Zadorsky, S. P., Sopova, J. V., Inge–Vechtomov, S. G., and Galkin, A. P. (2016) Interaction of prions causes heritable traits in Saccharomyces cerevisiae, PLOS Genet., 12, e1006504, doi: https://doi.org/10.1371/journal.pgen.1006504.

    Book  Google Scholar 

  32. 32.

    Rubel, A. A., Ryzhova, T. A., Antonets, K. S., Chernoff, Y. O., and Galkin, A. P. (2013) Identification of PrP sequences essential for the interaction between the PrP polymers and Aβ peptide in an yeast–based assay, Prion, 7, 469–476, doi: https://doi.org/10.4161/pri.26867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Newnam, G. P., Wegrzyn, R. D., Lindquist, S. L., and Chernoff, Y. O. (1999) Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing, Mol. Cell. Biol., 19, 1325–1333, doi: https://doi.org/10.1128/mcb.19.2.1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Saifitdinova, A. F., Nizhnikov, A. A., Lada, A. G., Rubel, A. A., Magomedova, Z. M., Ignatova, V. V., Inge–Vechtomov, S. G., and Galkin, A. P. (2010) [NSI(+)]: a novel non–Mendelian nonsense suppressor determinant in Saccharomyces cerevisiae, Curr. Genet., 56, 467–478, doi: https://doi.org/10.1007/s00294-010-0314-2.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Derkatch, I. L., and Liebman, S. W. (2007) Prion–prion interactions, Prion, 1, 161–169.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Masison, D. C., and Reidy, M. (2015) Yeast prions are useful for studying protein chaperones and protein quality control, Prion, 9, 174–183, doi: https://doi.org/10.1080/19336896.2015.1027856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Huang, Z., Chen, K., Zhang, J., Li, Y., Wang, H., Cui, D., Tang, J., Liu, Y., Shi, X., Li, W., Liu, D., Chen, R., Sucgang, R. S., and Pan, X. (2013) A functional variomics tool for discovering drug–resistance genes and drug targets, Cell Rep., 3, 577–585, doi: https://doi.org/10.1016/j.celrep.2013.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Holmes, D. L., Lancaster, A. K., Lindquist, S., and Halfmann, R. (2013) Heritable remodeling of yeast multi–cellularity by an environmentally responsive prion, Cell, 153, 153–165, doi: https://doi.org/10.1016/j.cell.2013.02.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cox, B. (1994) Cytoplasmic inheritance: prion–like factors in yeast, Curr. Biol., 4, 744–748, doi: https://doi.org/10.1016/S0960-9822(00)00167-6.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Inge–Vechtomov, S. G. (2013) The template principle: paradigm of modern genetics, Genetika, 49, 9–15, doi: https://doi.org/10.1134/S1022795413010055.

    PubMed  Google Scholar 

  41. 41.

    Wickner, R. B. (2011) Prion diseases: infectivity versus toxicity, Nature, 470, 470–471, doi: https://doi.org/10.1038/470470a.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Liebman, S. W., and Derkatch, I. L. (1999) The yeast [PSI+] prion: making sense of nonsense, J. Biol. Chem., 274, 1181–1184, doi: https://doi.org/10.1074/jbc.274.3.1181.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Bertram, P. G., Choi, J. H., Carvalho, J., Ai, W., Zeng, C., Chan, T. F., and Zheng, X. F. S. (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases, J. Biol. Chem., 275, 35727–35733, doi: https://doi.org/10.1074/jbc.M004235200.

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Eisenberg, D., and Jucker, M. (2012) The amyloid state of proteins in human diseases, Cell, 148, 1188–1203, doi: https://doi.org/10.1016/j.cell.2012.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Chernova, T. A., Kiktev, D. A., Romanyuk, A. V., Shanks, J. R., Laur, O., Ali, M., Ghosh, A., Kim, D., Yang, Z., Mang, M., Chernoff, Y. O., and Wilkinson, K. D. (2017) Yeast short–lived actin–associated protein forms a metastable prion in response to thermal stress, Cell Rep., 18, 751–761, doi: https://doi.org/10.1016/j.celrep.2016.12.082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Sopko, R., Huang, D., Preston, N., Chua, G., Papp, B., Kafadar, K., Snyder, M., Oliver, S. G., Cyert, M., Hughes, T. R., Boone, C., and Andrews, B. (2006) Mapping pathways and phenotypes by systematic gene overexpression, Mol. Cell, 21, 319–330, doi: https://doi.org/10.1016/j.molcel.2005.12.011.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Osherovich, L. Z., Cox, B. S., Tuite, M. F., and Weissman, J. S. (2004) Dissection and design of yeast prions, PLoS Biol., 2, e86, doi: https://doi.org/10.1371/journal.pbio.0020086.

    Book  Google Scholar 

  48. 48.

    Crist, C. G., Nakayashiki, T., Kurahashi, H., and Nakamura, Y. (2003) [PHI+], a novel Sup35–prion variant propagated with non–Gln/Asn oligopeptide repeats in the absence of the chaperone protein Hsp104, Genes Cells, 8, 603–618, doi: https://doi.org/10.1046/j.1365-2443.2003.00661.x.

    CAS  Google Scholar 

  49. 49.

    Chong, Y. T., Koh, J. L. Y., Friesen, H., Duffy, K., Cox, M. J., Moses, A., Moffat, J., Boone, C., and Andrews, B. J. (2015) Yeast proteome dynamics from single cell imaging and automated analysis, Cell, 161, 1413–1424, doi: https://doi.org/10.1016/j.cell.2015.04.051.

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Wickner, R. B., Masison, D. C., and Edskes, H. K. (1995) [PSI] and [URE3] as yeast prions, Yeast, 11, 1671–1685, doi: https://doi.org/10.1002/yea.320111609.

    CAS  Google Scholar 

  51. 51.

    Sikorski, R. S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 122, 19–27, doi: 0378111995000377.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Chernoff, Y. O., Newnam, G. P., Kumar, J., Allen, K., and Zink, A. D. (1999) Evidence for a protein mutator in yeast: role of the Hsp70–related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion, Mol. Cell. Biol., 19, 8103–8112, doi: https://doi.org/10.1128/MCB.19.12.8103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Nizhnikov.

Additional information

Russian Text © K. S. Antonets, M. V. Belousov, M. E. Belousova, A. A. Nizhnikov, 2019, published in Biokhimiya, 2019, Vol. 84, No. 4, pp. 587–599.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonets, K.S., Belousov, M.V., Belousova, M.E. et al. The Gln3 Transcriptional Regulator of Saccharomyces cerevisiae Manifests Prion-Like Properties upon Overproduction. Biochemistry Moscow 84, 441–451 (2019). https://doi.org/10.1134/S0006297919040126

Download citation

Keywords

  • prion
  • Gln3
  • amyloid
  • [PIN +]
  • infectivity
  • yeast
  • S. cerevisiae