Skip to main content
Log in

R482L Mutation of the LMNA Gene Affects Dynamics of C2C12 Myogenic Differentiation and Stimulates Formation of Intramuscular Lipid Droplets

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mutations in the LMNA gene resulting in the substitution of the highly conserved arginine 482 residue in the globular C-terminal domain of lamin A/C are associated with the Dunnigan-type familial partial lipodystrophy (FPLD2) often accompanied by impairments in the muscle tissue development. The mechanisms underlying these impairments remain unknown. The purpose of our work was to investigate the effects of the LMNA gene mutation R482L on the muscle differentiation and intramuscular fat accumulation using C2C12 mouse myoblasts transduced with the lentiviral constructs carrying the wild-type human LMNA gene (LMNA-WT) or the LMNA-R482L mutant gene. After stimulation of myogenesis and adipogenesis in the transduced cell, expression of muscle and adipose tissue differentiation markers, morphology of differentiated myotubes, and formation of intramuscular lipid droplets were analyzed. C2C12 cells carrying the LMNA-R482L construct exhibited upregulated desmin expression at all stages of muscle differentiation and transformed into hypertrophied myotubules (in comparison with C2C12 myoblasts transduced with LMNA-WT). Reduced expression levels of the myogenic transcription factor Myf6 in the cells with the LMNA-R482L mutant indicated delayed maturation of muscle fibers. These cells more actively accumulated fat in response to the stimulation of adipose differentiation than myoblasts modified with the wild-type LMNA; they also expressed the markers of lipid droplets, such as FABP4 (fatty acid-binding protein 4), ATGL (adipose triglyceride lipase), and PLIN2 (perilipin 2). Therefore, the R482L mutation of the LMNA gene affects the dynamics of C2C12 myoblast differentiation into myotubules and stimulates formation of fat deposits in the myoblasts and myotubules in a tissue-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATGL:

adipose triglyceride lipase

BSA:

bovine serum albumin

DAPI:

4′,6-diamidino-2-phenylindol

DM:

differentiating medium

DMEM:

Dulbecco modified Eagle’s medium

FABP4:

fatty acid-binding protein 4

FPLD2:

familial partial lipodystrophy, Dunnigan type

MSC:

mesenchymal stem cell

MYH3:

fetal myosin

MYMK:

myoblast fusion factor (myomaker)

MyoD:

myogenic regulatory factor D

PBS:

phosphate buffered saline

PLIN2:

perilipin 2

qPCR:

real-time polymerase chain reaction

WT:

wild-type

References

  1. Hutchison, C. J., and Worman, H. J. (2004) A–type lamins: guardians of the soma? Nat. Cell Biol., 6, 1062–1067.

    Article  CAS  PubMed  Google Scholar 

  2. Lin, F., and Worman, H. J. (1993) Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C, J. Biol. Chem., 268, 16321–16326.

    CAS  PubMed  Google Scholar 

  3. Dubinska–Magiera, M., Zaremba–Czogalla, M., and Rzepecki, R. (2013) Muscle development, regeneration and laminopathies: how lamins or lamina–associated pro–teins can contribute to muscle development, regeneration and disease, Cell. Mol. Life Sci., 70, 2713–2741.

    Article  CAS  PubMed  Google Scholar 

  4. Schreiber, K. H., and Kennedy, B. K. (2013) When lamins go bad: nuclear structure and disease, Cell, 152, 1365–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ostlund, C., Bonne, G., Schwartz, K., and Worman, H. J. (2001) Properties of lamin A mutants found in Emery–Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan–type partial lipodystrophy, J. Cell Sci., 114, 4435–4445.

    CAS  PubMed  Google Scholar 

  6. De Las Heras, J. I., Meinke, P., Batrakou, D. G., Srsen, V., Zuleger, N., Kerr, A. R., and Schirmer, E. C. (2013) Tissue specificity in the nuclear envelope supports its functional complexity, Nucleus, 4, 460–477.

    Article  PubMed  Google Scholar 

  7. Manju, K., Muralikrishna, B., and Parnaik, V. K. (2006) Expression of disease–causing lamin A mutants impairs the formation of DNA repair foci, J. Cell Sci., 119, 2704–2714.

    Article  CAS  PubMed  Google Scholar 

  8. Parnaik, V. K., and Manju, K. (2006) Laminopathies: mul–tiple disorders arising from defects in nuclear architecture, J. Biosci., 31, 405–421.

    Article  CAS  PubMed  Google Scholar 

  9. Sebillon, P., Bouchier, C., Bidot, L. D., Bonne, G., Ahamed, K., Charron, P., Drouin–Garraud, V., Millaire, A., Desrumeaux, G., Benaiche, A., Charniot, J.–C., Schwartz, K., Villard, E., and Komajda, M. (2003) Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations, J. Med. Genet., 40, 560–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sehgal, P., Chaturvedi, P., Kumaran, R. I., Kumar, S., and Parnaik, V. K. (2013) Lamin A/C haploinsufficiency mod–ulates the differentiation potential of mouse fetal stem cells, PLoS One, 8, e57891.

    Google Scholar 

  11. Naetar, N., Ferraioli, S., and Foisner, R. (2017) Lamins in the nuclear interior–life outside the lamina, J. Cell Sci., 130, 2087–2096.

    Article  CAS  PubMed  Google Scholar 

  12. Speckman, R. A., Garg, A., Du, F., Bennett, L., Veile, R., Arioglu, E., Taylor, S. I., Lovett, M., and Bowcock, A. M. (2000) Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C–terminal domain of lamin A/C, Am. J. Hum. Genet., 66, 1192–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hegele, R. A., Huff, M. W., and Young, T. K (2001) Common genomic variation in LMNA modulates indexes of obesity in Inuit, J. Clin. Endocrinol. Metab., 86, 2747–2751.

    CAS  PubMed  Google Scholar 

  14. Garg, A., Peshock, R. M., and Fleckenstein, J. L. (1999) Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety), J. Clin. Endocrinol. Metab., 84, 70–74.

    Google Scholar 

  15. Ji, H., Weatheral, P., Adams–Huet, B., and Garg, A. (2013) Increased skeletal muscle volume in women with familial partial lipodystrophy, Dunnigan variety, J. Clin. Endocrinol. Metab., 98, E1410–E1413.

    Google Scholar 

  16. Shackleton, S., Lloyd, D. J., Jackson, S. N. J., Evans, R., Niermeijer, M. F., Singh, B. M., Schmidt, H., Brabant, G., Kumar, S., Durrington, P. N., Gregory, S., O’Rahilly, S., and Trembath, R. C. (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy, Nat. Genet., 24, 153–156.

    Article  CAS  PubMed  Google Scholar 

  17. Vantyghem, M. C., Pigny, P., Maurage, C. A., Rouaix–Emery, N., Stojkovic, T., Cuisset, J. M., Millaire, A., Lascols, O., Vermersch, P., Wemeau, J. L., Capeau, J., and Vigouroux, J. L. (2004) Patients with familial partial lipodystrophy of the Dunnigan type due to a LMNA R482W mutation show muscular and cardiac abnormali–ties, J. Clin. Endocrinol. Metab., 89, 5337–5346.

    Article  CAS  PubMed  Google Scholar 

  18. Guenantin, A. C., Briand, N., Bidault, G., Afonso, P., Bereziat, V., Vatier, C., Lascols, O., Caron–Debarle, M., Capeau, J., and Vigouroux, C. (2014) Nuclear envelope–related lipodystrophies, Semin. Cell Dev. Biol., 29, 148–157.

    Article  CAS  PubMed  Google Scholar 

  19. Muchir, A., Bonne, G., van der Kooi, A. J., van Meegen, M., Baas, F., Bolhuis, P. A., de Visser, M., and Schwartz, K. (2000) Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B), Hum. Mol. Genet., 9, 1453–1459.

    Article  CAS  PubMed  Google Scholar 

  20. Boschmann, M., Engeli, S., Moro, C., Luedtke, A., Adams, F., Gorzelniak, K., Rahn, G., Mahler, A., Dobberstein, K., Kruger, A., Schmidt, S., Spuler, S., Luft, F. C., Smith, S. R., Schmidt, H. H.–J., and Jordan, J. (2010) LMNA mutations, skeletal muscle lipid metabo–lism, and insulin resistance, J. Clin. Endocrinol. Metab., 95, 1634–1643.

    CAS  Google Scholar 

  21. Malashicheva, A., Bogdanova, M., Zabirnyk, A., Smolina, N., Ignatieva, E., Freilikhman, O., Fedorov, A., Dmitrieva, R., Sjoberg, G., Sejersen, T., and Kostareva, A. (2015) Various lamin A/C mutations alter expression profile of mesenchymal stem cells in mutation specific manner, Mol. Genet. Metab., 115, 118–127.

    Article  CAS  PubMed  Google Scholar 

  22. Perepelina, K., Dmitrieva, R., Ignatieva, E., Borodkina, A., Kostareva, A., and Malashicheva, A. (2018) Lamin A/C mutation associated with lipodystrophy influences adi–pogenic differentiation of stem cells through interaction with Notch signaling, Biochem. Cell Biol., 96, 342–348.

    Article  CAS  PubMed  Google Scholar 

  23. Perepelina, K. I., Smolina, N. A., Zabirnik, A. S., Dmitrieva, R. I., Malashicheva, A. B., and Kostareva, A. A. (2017) The role of LMNA mutations in myogenic differen–tiation of C2C12 and primary satellite cells, Cell Tissue Biol., 59, 117–124.

    CAS  Google Scholar 

  24. Bentzinger, C. F., Wang, Y. X., and Rudnicki, M. A. (2012) Building muscle: molecular regulation of myogenesis, Cold Spring Harbor Perspect. Biol., 4, a008342.

    Google Scholar 

  25. Hol, E. M., and Capetanaki, Y. (2017) Type III intermedi–ate filaments desmin, glial fibrillary acidic protein (GFAP), vimentin, and peripherin, Cold Spring Harbor Perspect. Biol., 9, a021642.

    Google Scholar 

  26. Capetanaki, Y., Milner, D. J., and Weitzer, G. (1997) Desmin in muscle formation and maintenance: knockouts and consequences, Cell Struct. Funct., 22, 103–116.

    Article  CAS  PubMed  Google Scholar 

  27. Holst, D., Luquet, S., Kristiansen, K., and Grimaldi, P. A. (2003) Roles of peroxisome proliferator–activated receptors delta and gamma in myoblast transdifferentiation, Exp. Cell Res., 288, 168–176.

    Article  CAS  PubMed  Google Scholar 

  28. Grimaldi, P. A., Teboul, L., Inadera, H., Gaillard, D., and Amri, E. Z. (1997) Trans–differentiation of myoblasts to adipoblasts: triggering effects of fatty acids and thiazo–lidinediones, Prostaglandins. Leukot. Essent. Fatty Acids, 57, 71–75.

    Article  CAS  PubMed  Google Scholar 

  29. Bosma, M. (2016) Lipid droplet dynamics in skeletal mus–cle, Exp. Cell Res., 340, 180–186.

    Article  CAS  PubMed  Google Scholar 

  30. MacPherson, R. E. K., Ramos, S. V., Vandenboom, R., Roy, B. D., and Peters, S. J. (2013) Skeletal muscle PLIN proteins, ATGL and CGI–58, interactions at rest and fol–lowing stimulated contraction, Am. J. Physiol. Regul. Integr. Comp. Physiol., 304, R644–R650.

    Google Scholar 

  31. Rankin, J., and Ellard, S. (2006) The laminopathies: a clin–ical review, Clin. Genet., 70, 261–274.

    Article  CAS  PubMed  Google Scholar 

  32. Shah, S. B., Davis, J., Weisleder, N., Kostavassili, I., McCulloch, A. D., Ralston, E., Capetanaki, Y., and Lieber, R. L. (2004) Structural and functional roles of desmin in mouse skeletal muscle during passive deformation, Biophys. J., 86, 2993–3008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ralston, E., Lu, Z., Biscocho, N., Soumaka, E., Mavroidis, M., Prats, C., Lomo, T., Capetanaki, Y., and Ploug, T. (2006) Blood vessels and desmin control the posi–tioning of nuclei in skeletal muscle fibers, J. Cell. Physiol., 209, 874–882.

    Article  CAS  PubMed  Google Scholar 

  34. Roman, W., Martins, J. P., Carvalho, F. A., Voituriez, R., Abella, J. V. G., Santos, N. C., Cadot, B., Way, M., and Gomes, E. R. (2017) Myofibril contraction and crosslink–ing drive nuclear movement to the periphery of skeletal muscle, Nat. Cell Biol., 19, 1189–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frock, R. L., Kudlow, B. A., Evans, A. M., Jameson, S. A., Hauschka, S. D., and Kennedy, B. K. (2006) Lamin A/C and emerin are critical for skeletal muscle satellite cell dif–ferentiation, Genes Dev., 20, 486–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sorkina, E. L., Kalashnikova, M. F., Melnichenko, G. A., and Tyulpakov, A. N. (2015) Familial partial lipodystrophy (Dunnigan syndrome) as a consequence of mutation in the LMNA gene: the first description of clinical case in Russia, Terap. Arkhiv, 87, 83–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Khromova.

Additional information

Russian Text © N. V. Khromova, K. I. Perepelina, O. A. Ivanova, A. B. Malashicheva, A. A. Kostareva, R. I. Dmitrieva, 2019, published in Biokhimiya, 2019, Vol. 84, No. 3, pp. 354–364.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khromova, N.V., Perepelina, K.I., Ivanova, O.A. et al. R482L Mutation of the LMNA Gene Affects Dynamics of C2C12 Myogenic Differentiation and Stimulates Formation of Intramuscular Lipid Droplets. Biochemistry Moscow 84, 241–249 (2019). https://doi.org/10.1134/S0006297919030064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919030064

Keywords

Navigation