Skip to main content
Log in

Common and Specific Functions of Nonmuscle Myosin II Paralogs in Cells

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Various forms of cell motility critically depend on pushing, pulling, and resistance forces generated by the actin cytoskeleton. Whereas pushing forces largely depend on actin polymerization, pulling forces responsible for cell contractility and resistance forces maintaining the cell shape require interaction of actin filaments with the multivalent molecular motor myosin II. In contrast to muscle–specific myosin II paralogs, nonmuscle myosin II (NMII) functions in virtually all mammalian cells, where it executes numerous mechanical tasks. NMII is expressed in mammalian cells as a tissue–specific combination of three paralogs, NMIIA, NMIIB, and NMIIC. Despite overall similarity, these paralogs differ in their molecular properties, which allow them to play both unique and common roles. Importantly, the three paralogs can also cooperate with each other by mixing and matching their unique capabilities. Through specialization and cooperation, NMII paralogs together execute a great variety of tasks in many different cell types. Here, we focus on mammalian NMII paralogs and review novel aspects of their kinetics, regulation, and functions in cells from the perspective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACD1(2):

assembly competence domain 1(2)

ECM:

extracellular matrix

MRLC:

myosin regulatory light chains

NMII:

nonmuscle myosin II

SF:

stress fibers

References

  1. Ma, X., and Adelstein, R. S. (2014) The role of vertebrate nonmuscle myosin II in development and human disease, Bioarchitecture, 4, 88–102.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Burgess, S. A., Yu, S., Walker, M. L., Hawkins, R. J., Chalovich, J. M., and Knight, P. J. (2007) Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state, J. Mol. Biol., 372, 1165–1178.

    Article  CAS  PubMed  Google Scholar 

  3. Heissler, S. M., and Sellers, J. R. (2016) Various themes of myosin regulation, J. Mol. Biol., 428, 1927–1946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Melli, L., Billington, N., Sun, S. A., Bird, J. E., Nagy, A., Friedman, T. B., Takagi, Y., and Sellers, J. R. (2018) Bipolar filaments of human nonmuscle myosin 2–A and 2–B have distinct motile and mechanical properties, eLife, 7, e32871.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Heissler, S. M., and Manstein, D. J. (2013) Nonmuscle myosin–2: mix and match, Cell. Mol. Life Sci., 70, 1–21.

    Article  CAS  PubMed  Google Scholar 

  6. Heissler, S. M., and Sellers, J. R. (2016) Kinetic adaptations of myosins for their diverse cellular functions, Traffic, 17, 839–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Billington, N., Wang, A., Mao, J., Adelstein, R. S., and Sellers, J. R. (2013) Characterization of three full–length human nonmuscle myosin II paralogs, J. Biol. Chem., 288, 33398–33410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakasawa, T., Takahashi, M., Matsuzawa, F., Aikawa, S., Togashi, Y., Saitoh, T., Yamagishi, A., and Yazawa, M. (2005) Critical regions for assembly of vertebrate nonmuscle myosin II, Biochemistry, 44, 174–183.

    Article  CAS  PubMed  Google Scholar 

  9. Beach, J. R., Shao, L., Remmert, K., Li, D., Betzig, E., and Hammer, J. A., 3rd (2014) Nonmuscle myosin II iso–forms coassemble in living cells, Curr. Biol., 24, 1160–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shutova, M. S., Spessott, W. A., Giraudo, C. G., and Svitkina, T. (2014) Endogenous species of mammalian nonmuscle myosin IIA and IIB include activated monomers and heteropolymers, Curr. Biol., 24, 1958–1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitsuhashi, M., Sakata, H., Kinjo, M., Yazawa, M., and Takahashi, M. (2011) Dynamic assembly properties of nonmuscle myosin II isoforms revealed by combination of fluorescence correlation spectroscopy and fluorescence cross–correlation spectroscopy, J. Biochem., 149, 253–263.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, X., Billington, N., Shu, S., Yu, S. H., Piszczek, G., Sellers, J. R., and Korn, E. D. (2017) Effect of ATP and regulatory light–chain phosphorylation on the polymerization of mammalian nonmuscle myosin II, Proc. Natl. Acad. Sci. USA, 114, E6516–E6525.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, X., Shu, S., and Korn, E. D. (2018) Polymerization pathway of mammalian nonmuscle myosin 2s, Proc. Natl. Acad. Sci. USA, 115, E7101–E7108.

    Article  CAS  PubMed  Google Scholar 

  14. Rosenberg, M., Straussman, R., Ben–Ya’acov, A., Ronen, D., and Ravid, S. (2008) MHC–IIB filament assembly and cellular localization are governed by the rod net charge, PLoS One, 3, e1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beach, J. R., and Hammer, J. A., 3rd (2015) Myosin II iso–form co–assembly and differential regulation in mammalian systems, Exp. Cell Res., 334, 2–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dulyaninova, N. G., and Bresnick, A. R. (2013) The heavy chain has its day: regulation of myosin II assembly, Bioarchitecture, 3, 77–85.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Murakami, N., Kotula, L., and Hwang, Y. W. (2000) Two distinct mechanisms for regulation of nonmuscle myosin assembly via the heavy chain: phosphorylation for MIIB and Mts 1 binding for MIIA, Biochemistry, 39, 11441–11451.

    Article  CAS  PubMed  Google Scholar 

  18. Ronen, D., and Ravid, S. (2009) Myosin II tailpiece determines its paracrystal structure, filament assembly properties, and cellular localization, J. Biol. Chem., 284, 24948–24957.

    CAS  PubMed  Google Scholar 

  19. Dulyaninova, N. G., Malashkevich, V. N., Almo, S. C., and Bresnick, A. R. (2005) Regulation of myosin–IIA assembly and Mts1 binding by heavy chain phosphorylation, Biochemistry, 44, 6867–6876.

    Article  CAS  PubMed  Google Scholar 

  20. Ecsedi, P., Billington, N., Palfy, G., Gogl, G., Kiss, B., Bulyaki, E., Bodor, A., Sellers, J. R., and Nyitray, L. (2018) Multiple S100 protein isoforms and C–terminal phosphorylation contribute to the paralog–selective regulation of nonmuscle myosin 2 filaments, J. Biol. Chem., 293, 14850–14867.

    Article  CAS  PubMed  Google Scholar 

  21. Breckenridge, M. T., Dulyaninova, N. G., and Egelhoff, T. T. (2009) Multiple regulatory steps control mammalian nonmuscle myosin II assembly in live cells, Mol. Biol. Cell, 20, 338–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Juanes–Garcia, A., Chapman, J. R., Aguilar–Cuenca, R., Delgado–Arevalo, C., Hodges, J., Whitmore, L. A., Shabanowitz, J., Hunt, D. F., Horwitz, A. R., and Vicente–Manzanares, M. (2015) A regulatory motif in nonmuscle myosin II–B regulates its role in migratory front–back polarity, J. Cell Biol., 209, 23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosenberg, M., and Ravid, S. (2006) Protein kinase C gamma regulates myosin IIB phosphorylation, cellular localization, and filament assembly, Mol. Biol. Cell, 17, 1364–1374.

    CAS  PubMed  Google Scholar 

  24. Du, M., Wang, G., Ismail, T. M., Gross, S., Fernig, D. G., Barraclough, R., and Rudland, P. S. (2012) S100P dissociates myosin IIA filaments and focal adhesion sites to reduce cell adhesion and enhance cell migration, J. Biol. Chem., 287, 15330–15344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dahan, I., Yearim, A., Touboul, Y., and Ravid, S. (2012) The tumor suppressor Lgl1 regulates NMIIA cellular distribution and focal adhesion morphology to optimize cell migration, Mol. Biol. Cell, 23, 591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Solinet, S., Akpovi, C. D., Garcia, C. J., Barry, A., and Vitale, M. L. (2011) Myosin IIB deficiency in embryonic fibroblasts affects regulators and core members of the par polarity complex, Histochem. Cell Biol., 136, 245–266.

    Article  CAS  PubMed  Google Scholar 

  27. West–Foyle, H., Kothari, P., Osborne, J., and Robinson, D. N. (2018) 14–3–3 proteins tune non–muscle myosin II assembly, J. Biol. Chem., 293, 6751–6761.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Billington, N., Beach, J. R., Heissler, S. M., Remmert, K., Guzik–Lendrum, S., Nagy, A., Takagi, Y., Shao, L., Li, D., Yang, Y., Zhang, Y., Barzik, M., Betzig, E., Hammer, J. A., 3rd, and Sellers, J. R. (2015) Myosin 18A coassembles with nonmuscle myosin 2 to form mixed bipolar filaments, Curr. Biol., 25, 942–948.

    Article  CAS  PubMed  Google Scholar 

  29. Sanborn, K. B., Mace, E. M., Rak, G. D., Difeo, A., Martignetti, J. A., Pecci, A., Bussel, J. B., Favier, R., and Orange, J. S. (2011) Phosphorylation of the myosin IIA tailpiece regulates single myosin IIA molecule association with lytic granules to promote NK–cell cytotoxicity, Blood, 118, 5862–5871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shutova, M., Yang, C., Vasiliev, J. M., and Svitkina, T. (2012) Functions of nonmuscle myosin II in assembly of the cellular contractile system, PLoS One, 7, e40814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verkhovsky, A. B., Svitkina, T. M., and Borisy, G. G. (1995) Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles, J. Cell Biol., 131, 989–1002.

    Article  CAS  PubMed  Google Scholar 

  32. Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M., and Borisy, G. G. (1997) Analysis of the actin–myosin II system in fish epidermal keratocytes: mechanism of cell body translocation, J. Cell Biol., 139, 397–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beach, J. R., Bruun, K. S., Shao, L., Li, D., Swider, Z., Remmert, K., Zhang, Y., Conti, M. A., Adelstein, R. S., Rusan, N. M., Betzig, E., and Hammer, J. A. (2017) Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments, Nat. Cell Biol., 19, 85–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu, S., Dasbiswas, K., Guo, Z., Tee, Y. H., Thiagarajan, V., Hersen, P., Chew, T. L., Safran, S. A., Zaidel–Bar, R., and Bershadsky, A. D. (2017) Long–range self–organization of cytoskeletal myosin II filament stacks, Nat. Cell Biol., 19, 133–141.

    Article  CAS  PubMed  Google Scholar 

  35. Uyeda, T. Q., Iwadate, Y., Umeki, N., Nagasaki, A., and Yumura, S. (2011) Stretching actin filaments within cells enhances their affinity for the myosin II motor domain, PloS One, 6, e26200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martin, A. C. (2010) Pulsation and stabilization: contractile forces that underlie morphogenesis, Dev. Biol., 341, 114–125.

    Article  CAS  PubMed  Google Scholar 

  37. Spira, F., Cuylen–Haering, S., Mehta, S., Samwer, M., Reversat, A., Verma, A., Oldenbourg, R., Sixt, M., and Gerlich, D. W. (2017) Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments, Elife, 6, e30867.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Baird, M. A., Billington, N., Wang, A., Adelstein, R. S., Sellers, J. R., Fischer, R. S., and Waterman, C. M. (2017) Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells, Mol. Biol. Cell, 28, 240–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hotulainen, P., and Lappalainen, P. (2006) Stress fibers are generated by two distinct actin assembly mechanisms in motile cells, J. Cell Biol., 173, 383–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tojkander, S., Gateva, G., and Lappalainen, P. (2012) Actin stress fibers–assembly, dynamics and biological roles, J. Cell Sci., 125, 1855–1864.

    CAS  PubMed  Google Scholar 

  41. Tee, Y. H., Shemesh, T., Thiagarajan, V., Hariadi, R. F., Anderson, K. L., Page, C., Volkmann, N., Hanein, D., Sivaramakrishnan, S., Kozlov, M. M., and Bershadsky, A. D. (2015) Cellular chirality arising from the self–organization of the actin cytoskeleton, Nat. Cell Biol., 17, 445–457.

    Article  CAS  PubMed  Google Scholar 

  42. Lee, S., Kassianidou, E., and Kumar, S. (2018) Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation, Mol. Biol. Cell, 29, 1992–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tojkander, S., Gateva, G., Husain, A., Krishnan, R., and Lappalainen, P. (2015) Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly, Elife, 4, e06126.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sandquist, J. C., and Means, A. R. (2008) The C–terminal tail region of nonmuscle myosin II directs isoform–specific distribution in migrating cells, Mol. Biol. Cell, 19, 5156–5167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vicente–Manzanares, M., Koach, M. A., Whitmore, L., Lamers, M. L., and Horwitz, A. F. (2008) Segregation and activation of myosin IIB creates a rear in migrating cells, J. Cell Biol., 183, 543–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dey, S. K., Singh, R. K., Chattoraj, S., Saha, S., Das, A., Bhattacharyya, K., Sengupta, K., Sen, S., and Jana, S. S. (2017) Differential role of nonmuscle myosin II isoforms during blebbing of MCF–7 cells, Mol. Biol. Cell, 28, 1034–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dulyaninova, N. G., House, R. P., Betapudi, V., and Bresnick, A. R. (2007) Myosin–IIA heavy–chain phosphorylation regulates the motility of MDA–MB–231 carcinoma cells, Mol. Biol. Cell, 18, 3144–3155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pasapera, A. M., Plotnikov, S. V., Fischer, R. S., Case, L. B., Egelhoff, T. T., and Waterman, C. M. (2015) Rac1–dependent phosphorylation and focal adhesion recruitment of myosin IIA regulates migration and mechanosensing, Curr. Biol., 25, 175–186.

    Article  CAS  PubMed  Google Scholar 

  49. Shutova, M. S., Asokan, S. B., Talwar, S., Assoian, R. K., Bear, J. E., and Svitkina, T. M. (2017) Self–sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility, J. Cell Biol., 216, 2877–2889.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, Z., Guo, S. S., and Fassler, R. (2016) Integrin–mediated mechanotransduction, J. Cell Biol., 215, 445–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cai, Y., Biais, N., Giannone, G., Tanase, M., Jiang, G., Hofman, J. M., Wiggins, C. H., Silberzan, P., Buguin, A., Ladoux, B., and Sheetz, M. P. (2006) Nonmuscle myosin IIA–dependent force inhibits cell spreading and drives Factin flow, Biophys. J., 91, 3907–3920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomas, D. G., Yenepalli, A., Denais, C. M., Rape, A., Beach, J. R., Wang, Y. L., Schiemann, W. P., Baskaran, H., Lammerding, J., and Egelhoff, T. T. (2015) Non–muscle myosin IIB is critical for nuclear translocation during 3D invasion, J. Cell Biol., 210, 583–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Betapudi, V. (2010) Myosin II motor proteins with different functions determine the fate of lamellipodia extension during cell spreading, PLoS One, 5, e8560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saha, S., Dey, S. K., Biswas, A., Das, P., Das, M. R., and Jana, S. S. (2013) The effect of including the C2 insert of nonmuscle myosin II–C on neuritogenesis, J. Biol. Chem., 288, 7815–7828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wylie, S. R., and Chantler, P. D. (2008) Myosin IIC: a third molecular motor driving neuronal dynamics, Mol. Biol. Cell, 19, 3956–3968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lo, C. M., Buxton, D. B., Chua, G. C., Dembo, M., Adelstein, R. S., and Wang, Y. L. (2004) Nonmuscle myosin IIb is involved in the guidance of fibroblast migration, Mol. Biol. Cell, 15, 982–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Betapudi, V., Licate, L. S., and Egelhoff, T. T. (2006) Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA–MB–231 breast cancer cell spreading and migration, Cancer Res., 66, 4725–4733.

    Article  CAS  PubMed  Google Scholar 

  58. Alexandrova, A. Y., Arnold, K., Schaub, S., Vasiliev, J. M., Meister, J. J., Bershadsky, A. D., and Verkhovsky, A. B. (2008) Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow, PLoS One, 3, e3234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gardel, M. L., Sabass, B., Ji, L., Danuser, G., Schwarz, U. S., and Waterman, C. M. (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed, J. Cell Biol., 183, 999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wylie, S. R., and Chantler, P. D. (2003) Myosin IIA drives neurite retraction, Mol. Biol. Cell, 14, 4654–4666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bridgman, P. C., Dave, S., Asnes, C. F., Tullio, A. N., and Adelstein, R. S. (2001) Myosin IIB is required for growth cone motility, J. Neurosci., 21, 6159–6169.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, Y. J., Le Berre, M., Lautenschlaeger, F., Maiuri, P., Callan–Jones, A., Heuze, M., Takaki, T., Voituriez, R., and Piel, M. (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells, Cell, 160, 659–672.

    Article  CAS  PubMed  Google Scholar 

  63. Wolf, K., Te Lindert, M., Krause, M., Alexander, S., Te Riet, J., Willis, A. L., Hoffman, R. M., Figdor, C. G., Weiss, S. J., and Friedl, P. (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force, J. Cell Biol., 201, 1069–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Even–Ram, S., Doyle, A. D., Conti, M. A., Matsumoto, K., Adelstein, R. S., and Yamada, K. M. (2007) Myosin IIA regulates cell motility and actomyosin–microtubule crosstalk, Nat. Cell Biol., 9, 299–309.

    Article  CAS  PubMed  Google Scholar 

  65. Liu, Z., Ho, C. H., and Grinnell, F. (2014) The different roles of myosin IIA and myosin IIB in contraction of 3D collagen matrices by human fibroblasts, Exp. Cell Res., 326, 295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Beach, J. R., Hussey, G. S., Miller, T. E., Chaudhury, A., Patel, P., Monslow, J., Zheng, Q., Keri, R. A., Reizes, O., Bresnick, A. R., Howe, P. H., and Egelhoff, T. T. (2011) Myosin II isoform switching mediates invasiveness after TGF–beta–induced epithelial–mesenchymal transition, Proc. Natl. Acad. Sci. USA, 108, 17991–17996.

    Article  PubMed  Google Scholar 

  67. Roy, A., Lordier, L., Mazzi, S., Chang, Y., Lapierre, V., Larghero, J., Debili, N., Raslova, H., and Vainchenker, W. (2016) Activity of nonmuscle myosin II isoforms determines localization at the cleavage furrow of megakaryocytes, Blood, 128, 3137–3145.

    Article  CAS  PubMed  Google Scholar 

  68. Badirou, I., Pan, J., Legrand, C., Wang, A., Lordier, L., Boukour, S., Roy, A., Vainchenker, W., and Chang, Y. (2014) Carboxyl–terminal–dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization, Blood, 124, 2564–2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beach, J. R., and Egelhoff, T. T. (2009) Myosin II recruitment during cytokinesis independent of centralspindlin–mediated phosphorylation, J. Biol. Chem., 284, 27377–27383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mui, K. L., Chen, C. S., and Assoian, R. K. (2016) The mechanical regulation of integrin–cadherin crosstalk organizes cells, signaling and forces, J. Cell Sci., 129, 1093–1100.

    CAS  PubMed  Google Scholar 

  71. Chung, S., Kim, S., and Andrew, D. J. (2017) Uncoupling apical constriction from tissue invagination, Elife, 6, e22235.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Efimova, N., and Svitkina, T. M. (2018) Branched actin networks push against each other at adherens junctions to maintain cell–cell adhesion, J. Cell Biol., 217, 1827–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gomez, G. A., McLachlan, R. W., Wu, S. K., Caldwell, B. J., Moussa, E., Verma, S., Bastiani, M., Priya, R., Parton, R. G., Gaus, K., Sap, J., and Yap, A. S. (2015) An RPTPalpha/Src family kinase/Rap1 signaling module recruits myosin IIB to support contractile tension at apical E–cadherin junctions, Mol. Biol. Cell, 26, 1249–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ma, X., Sung, D. C., Yang, Y., Wakabayashi, Y., and Adelstein, R. S. (2017) Nonmuscle myosin IIB regulates epicardial integrity and epicardium–derived mesenchymal cell maturation, J. Cell Sci., 130, 2696–2706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ivanov, A. I., and Naydenov, N. G. (2013) Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies, Int. Rev. Cell Mol. Biol., 303, 27–99.

    Article  CAS  PubMed  Google Scholar 

  76. Ozawa, M. (2018) Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of alpha–catenin, Biol. Open, 7, bio031369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smutny, M., Cox, H. L., Leerberg, J. M., Kovacs, E. M., Conti, M. A., Ferguson, C., Hamilton, N. A., Parton, R. G., Adelstein, R. S., and Yap, A. S. (2010) Myosin II iso–forms identify distinct functional modules that support integrity of the epithelial zonula adherens, Nat. Cell Biol., 12, 696–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rosa, A., Vlassaks, E., Pichaud, F., and Baum, B. (2015) Ect2/Pbl acts via Rho and polarity proteins to direct the assembly of an isotropic actomyosin cortex upon mitotic entry, Dev. Cell, 32, 604–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bovellan, M., Romeo, Y., Biro, M., Boden, A., Chugh, P., Yonis, A., Vaghela, M., Fritzsche, M., Moulding, D., Thorogate, R., Jegou, A., Thrasher, A. J., Romet–Lemonne, G., Roux, P. P., Paluch, E. K., and Charras, G. (2014) Cellular control of cortical actin nucleation, Curr. Biol., 24, 1628–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Smith, A. S., Nowak, R. B., Zhou, S., Giannetto, M., Gokhin, D. S., Papoin, J., Ghiran, I. C., Blanc, L., Wan, J., and Fowler, V. M. (2018) Myosin IIA interacts with the spectrin–actin membrane skeleton to control red blood cell membrane curvature and deformability, Proc. Natl. Acad. Sci. USA, 115, E4377–E4385.

    Article  CAS  PubMed  Google Scholar 

  81. Porat–Shliom, N., Milberg, O., Masedunskas, A., and Weigert, R. (2013) Multiple roles for the actin cytoskeleton during regulated exocytosis, Cell. Mol. Life Sci., 70, 2099–2121.

    Article  CAS  PubMed  Google Scholar 

  82. Chandrasekar, I., Goeckeler, Z. M., Turney, S. G., Wang, P., Wysolmerski, R. B., Adelstein, R. S., and Bridgman, P. C. (2014) Nonmuscle myosin II is a critical regulator of clathrin–mediated endocytosis, Traffic, 15, 418–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fath, K. R. (2005) Characterization of myosin–II binding to Golgi stacks in vitro, Cell Motil. Cytoskeleton, 60, 222–235.

    Article  CAS  PubMed  Google Scholar 

  84. Petrosyan, A., Ali, M. F., Verma, S. K., Cheng, H., and Cheng, P. W. (2012) Non–muscle myosin IIA transports a Golgi glycosyltransferase to the endoplasmic reticulum by binding to its cytoplasmic tail, Int. J. Biochem, Cell Biol., 44, 1153–1165.

    Article  CAS  Google Scholar 

  85. Korobova, F., Gauvin, T. J., and Higgs, H. N. (2014) A role for myosin II in mammalian mitochondrial fission, Curr. Biol., 24, 409–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rousso, T., Schejter, E. D., and Shilo, B. Z. (2016) Orchestrated content release from Drosophila glue–protein vesicles by a contractile actomyosin network, Nat. Cell Biol., 18, 181–190.

    Article  CAS  PubMed  Google Scholar 

  87. Milberg, O., Shitara, A., Ebrahim, S., Masedunskas, A., Tora, M., Tran, D. T., Chen, Y., Conti, M. A., Adelstein, R. S., Ten Hagen, K. G., and Weigert, R. (2017) Concerted actions of distinct nonmuscle myosin II isoforms drive intracellular membrane remodeling in live animals, J. Cell Biol., 216, 1925–1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Miklavc, P., Hecht, E., Hobi, N., Wittekindt, O. H., Dietl, P., Kranz, C., and Frick, M. (2012) Actin coating and compression of fused secretory vesicles are essential for surfactant secretion–a role for Rho, formins and myosin II, J. Cell Sci., 125, 2765–2774.

    Article  CAS  PubMed  Google Scholar 

  89. Nightingale, T. D., White, I. J., Doyle, E. L., Turmaine, M., Harrison–Lavoie, K. J., Webb, K. F., Cramer, L. P., and Cutler, D. F. (2011) Actomyosin II contractility expels von Willebrand factor from Weibel–Palade bodies during exo–cytosis, J. Cell Biol., 194, 613–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Miserey–Lenkei, S., Bousquet, H., Pylypenko, O., Bardin, S., Dimitrov, A., Bressanelli, G., Bonifay, R., Fraisier, V., Guillou, C., Bougeret, C., Houdusse, A., Echard, A., and Goud, B. (2017) Coupling fission and exit of RAB6 vesicles at Golgi hotspots through kinesin–myosin interactions, Nat. Commun., 8, 1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Svitkina.

Additional information

Published in Russian in Biokhimiya, 2018, Vol. 83, No. 12, pp. 1791–1801.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutova, M.S., Svitkina, T.M. Common and Specific Functions of Nonmuscle Myosin II Paralogs in Cells. Biochemistry Moscow 83, 1459–1468 (2018). https://doi.org/10.1134/S0006297918120040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918120040

Keywords

Navigation