Skip to main content
Log in

Pseudogenes as Functionally Significant Elements of the Genome

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Pseudogene is a gene copy that has lost its original function. For a long time, pseudogenes have been considered as “junk DNA” that inevitably arises as a result of ongoing evolutionary process. However, experimental data obtained during recent years indicate this understanding of the nature of pseudogenes is not entirely correct, and many pseudogenes perform important genetic functions. In the review, we have addressed classification of pseudogenes, methods of their detection in the genome, and the problem of their evolutionary conservatism and prevalence among species belonging to different taxonomic groups in the light of modern data. The mechanisms of gene expression regulation by pseudogenes and the role of pseudogenes in pathogenesis of various human diseases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

asRNA:

antisense RNA

ceRNA:

competing endogenous RNA

eRNA:

enhancer RNA

HMGA1 :

genes of high-mobility group A1

lncRNA:

long non-coding RNA

MAPK:

mitogen-activated protein kinase

miRNA:

microRNA

MRE:

miRNA response elements

mtDNA:

mitochondrial DNA

NGS:

next generation sequencing

NUMT:

nuclear mitochondrial (pseudogenes)

ORF:

open reading frame

piRNA:

small RNA that interacts with PIWI proteins

psRNA:

RNA of transcribed pseudogenes

RNAi:

RNA interference

siRNA:

small interfering RNA

sRNA:

sense RNA

UTR:

untranslated region

ψV:

pseudogene of variable domains of immunoglobulins

References

  1. Jacq, C., Miller, J. R., and Brownlee, G. G. (1977) A pseudogene structure in 5S DNA of Xenopus laevis, Cell, 12, 109–120.

    Article  PubMed  CAS  Google Scholar 

  2. Arnold, G. J., Kahnt, B., Herrenknecht, K., and Gross, H. J. (1987) A variant gene and a pseudogene for human 5S RNA are transcriptionally active in vitro, Gene, 60, 137–144.

    Article  PubMed  CAS  Google Scholar 

  3. Chiang, J. J., Sparrer, K. M. J., van Gent, M., Lassig, C., Huang, T., Osterrieder, N., Hopfner, K. P., and Gack, M. U. (2018) Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity, Nat. Immunol., 19, 53–62.

    Article  PubMed  CAS  Google Scholar 

  4. Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue, C., Marinov, G. K., Khatun, J., Williams, B. A., Zaleski, C., Rozowsky, J., Roder, M., Kokocinski, F., Abdelhamid, R. F., Alioto, T., Antoshechkin, I., Baer, M. T., Bar, N. S., Batut, P., Bell, K., Bell, I., Chakrabortty, S., Chen, X., Chrast, J., Curado, J., et al. (2012) Landscape of transcription in human cells, Nature, 489, 101–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Liu, W.-H., Tsai, Z. T.-Y., and Tsai, H.-K. (2017) Comparative genomic analyses highlight the contribution of pseudogenized protein-coding genes to human lincRNAs, BMC Genomics, 18,786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hezroni, H., Perry, R. B.-T., Meir, Z., Housman, G., Lubelsky, Y., and Ulitsky, I. (2017) A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes, Genome Biol., 18,162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kim, M. S., Pinto, S. M., Getnet, D., Nirujogi, R. S., Manda, S. S., Chaerkady, R., Madugundu, A. K., Kelkar, D. S., Isserlin, R., Jain, S., Thomas, J. K., Muthusamy, B., Leal-Rojas, P., Kumar, P., Sahasrabuddhe, N. A., et al. (2014) A draft map of the human proteome, Nature, 509, 575–581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ingolia, N. T., Brar, G. A., Stern-Ginossar, N., Harris, M. S., Talhouarne, G. J., Jackson, S. E., Wills, M. R., and Weissman, J. S. (2014) Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes, Cell Rep., 8, 1365–1379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ji, Z., Song, R., Regev, A., and Struhl, K. (2015) Many lncRNAs, 5′UTRs, and pseudogenes are translated, and some are likely to express functional proteins, eLife, 4, e08890.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Poliseno, L. (2012) Pseudogenes: newly discovered players in human cancer, Sci. Signal., 5, 2–13.

    Article  CAS  Google Scholar 

  11. Li, W., Yang, W., and Wang, X. (2013) Pseudogenes: pseudo or real functional elements? J. Genet. Genomics, 40, 171–177.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, J. (2003) Evolution by gene duplication: an update, Trends Ecol. Evol., 18, 292–298.

    Article  Google Scholar 

  13. Esnault, C., Maestre, J., and Heidmann, T. (2000) Human LINE retrotransposons generate processed pseudogenes, Nat. Genet., 24, 363–367.

    Article  PubMed  CAS  Google Scholar 

  14. Kaessmann, H., Vinckenbosch, N., and Long, M. (2009) RNA-based gene duplication: mechanistic and evolutionary insights, Nat. Rev. Genet., 10, 19–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kubiak, M. R., and Makalowska, I. (2017) Protein-coding genes’ retrocopies and their functions, Viruses, 9, E80.

    Article  PubMed  CAS  Google Scholar 

  16. Van den Hurk, J. A., Meij, I. C., Seleme, M. C., Kano, H., Nikopoulos, K., Hoefsloot, L. H., Sistermans, E. A., de Wijs, I. J., Mukhopadhyay, A., Plomp, A. S., de Jong, P. T., Kazazian, H. H., and Cremers, F. P. (2007) L1 retrotransposition can occur early in human embryonic development, Hum. Mol. Genet., 16, 1587–1592.

    Article  PubMed  CAS  Google Scholar 

  17. Cooke, S. L., Shlien, A., Marshall, J., Pipinikas, C. P., Martincorena, I., Tubio, J. M., Li, Y., Menzies, A., Mudie, L., Ramakrishna, M., Yates, L., Davies, H., Bolli, N., Bignell, G. R., Tarpey, P. S., Behjati, S., Nik-Zainal, S., Papaemmanuil, E., Teixeira, V. H., Raine, K., O’Meara, S., Dodoran, M. S., Teague, J. W., Butler, A. P., Iacobuzio-Donahue, C., Santarius, T., Grundy, R. G., Malkin, D., Greaves, M., Munshi, N., Flanagan, A. M., Bowtell, D., Martin, S., Larsimont, D., Reis-Filho, J. S., Boussioutas, A., Taylor, J. A., Hayes, N. D., Janes, S. M., Futreal, P. A., Stratton, M. R., McDermott, U., Campbell, P. J., and ICGC Breast Cancer Group (2014) Processed pseudogenes acquired somatically during cancer development, Nat. Commun., 5, 3644.

    Article  PubMed  CAS  Google Scholar 

  18. Anwar, S. L., Wulaningsih, W., and Lehmann, U. (2017) Transposable elements in human cancer: causes and consequences of deregulation, Int. J. Mol. Sci., 18, E974.

    Article  PubMed  CAS  Google Scholar 

  19. Ewing, A. D., Ballinger, T. J., Earl, D., Broad Institute Genome Sequencing and Analysis Program and Platform, Harris, C. C., Ding, L., Wilson, R. K., and Haussler, D. (2013) Retrotransposition of gene transcripts leads to structural variation in mammalian genomes, Genome Biol., 14, R22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kazazian, H. H., Jr. (2014) Processed pseudogene insertions in somatic cells, Mob. DNA, 5,20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dong, P., Zhang, X., Zhang, Y., Ma, X., Chen, L., and Yang, L. (2016) CircRNA-derived pseudogenes, Cell Res., 26, 747–750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Pei, B., Sisu, C., Frankish, A., Howald, C., Habegger, L., Mu, X. J., Harte, R., Balasubramanian, S., Tanzer, A., Diekhans, M., Reymond, A., Hubbard, T. J., Harrow, J., and Gerstein, M. B. (2012) The GENCODE pseudogene resource, Genome Biol., 13, R51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tourmen, Y., Baris, O., Dessen, P., Jacques, C., Malthiery, Y., and Reynier, P. (2002) Structure and chromosomal distribution of human mitochondrial pseudogenes, Genomics, 80, 71–77.

    Article  PubMed  CAS  Google Scholar 

  24. Calabrese, F. M., Balacco, D. L., Preste, R., Diroma, M. A., Forino, R., Ventura, M., and Attimonelli, M. (2017) NumtS colonization in mammalian genomes, Sci. Rep., 7, 16357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hazkani-Covo, E., and Covo, S. (2008) Numt-mediated double-strand break repair mitigates deletions during primate genome evolution, PLoS Genet., 4, e1000237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gaziev, A. I., and Shaikhaev, G. O. (2010) Nuclear mitochondrial pseudogenes, Mol. Biol. (Moscow), 44, 405–417.

    Article  CAS  Google Scholar 

  27. Turner, C., Killoran, C., Thomas, N. S., Rosenberg, M., Chuzhanova, N. A., Johnston, J., Kemel, Y., Cooper, D. N., and Biesecker, L. G. (2003) Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer, Hum. Genet., 112, 303–309.

    PubMed  Google Scholar 

  28. Singh, K. K., Choudhuryg, A. R., and Tiwarih, H. K. (2017) Numtogenesis as a mechanism for development of cancer, Semin. Cancer Biol., 47, 101–109.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Lang, M., Sazzini, M., Calabrese, F. M., Simone, D., and Boattini, A. (2012) Polymorphic NumtS trace human population relationships, Hum. Genet., 131, 757–771.

    Article  PubMed  Google Scholar 

  30. Prieto-Godino, L. L., Rytz, R., Bargeton, B., Abuin, L., Arguello, J. R., dal Peraro, M., and Benton, R. (2016) Olfactory receptor pseudo-pseudogenes, Nature, 539, 93–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ciomborowska, J., Rosikiewicz, W., Szklarczykz, D., Makalowski, W., and Makalowska, I. (2012) “Orphan” retrogenes in the human genome, Mol. Biol. Evol., 30, 384–396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tang, J., Ning, R., Zeng, B., and Li, Y. (2016) Molecular evolution of PTEN pseudogenes in mammals, PLoS One, 11, e0167851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang, Z., Harrison, P., and Gerstein, M. (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome, Genome Res., 12, 1466–1482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nei, M., and Rooney, A. P. (2005) Concerted and birth-and-death evolution of multigene families, Annu. Rev. Genet., 39, 121–152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Shiina, T., Blancher, A., Inoko, H., and Kulski, J. K. (2016) Comparative genomics of the human, macaque and mouse major histocompatibility complex, Immunology, 150, 127–138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Niimura, Y. (2012) Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics, Curr. Genomics, 13, 103–114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Thibaud-Nissen, F., Souvorov, A., Murphy, T., DiCuccio, M., and Kitts, P. (2013) Eukaryotic genome annotation pipeline, in The NCBI Handbook [Internet], 2nd Edn., National Center for Biotechnology Information, Bethesda (US).

    Google Scholar 

  38. Patrushev, L. I., and Kovalenko, T. F. (2014) Functions of noncoding sequences in mammalian genomes, Biochemistry (Moscow), 79, 1442–1469.

    Article  CAS  Google Scholar 

  39. Ohshima, K., Hattori, M., Yada, T., Gojobori, T., Sakaki, Y., and Okada, N. (2003) Whole-genome screening indicates a possible burst of formation of processed pseudo-genes and Alu repeats by particular L1 subfamilies in ancestral primates, Genome Biol., 4, R74.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rouchka, E. C., and Cha, I. E. (2009) Current trends in pseudogene detection and characterization, Curr. Bioinformatics, 4, 112–119.

    Article  CAS  Google Scholar 

  41. Harrison, P. M. (2014) Computational methods for pseudogene annotation based on sequence homology, in Pseudogenes: Functions and Protocols, Methods in Molecular Biology (Poliseno, L., ed.) Vol. 1167, Springer Science + Business Media, N. Y., pp. 27–39.

    Article  Google Scholar 

  42. Andrieux, O. L., and Arenales, D. T. (2014) Whole-genome identification of neutrally evolving pseudogenes using the evolutionary measure dN/dS, in Pseudogenes: Functions and Protocols, Methods in Molecular Biology (Poliseno, L., ed.) Vol. 1167, Springer Science + Business Media, N. Y., pp. 75–85.

    Article  Google Scholar 

  43. Kalyana-Sundaram, S., Kumar-Sinha, C., Shankar, S., Robinson, D. R., Wu, Y. M., Cao, X., Asangani, I. A., Kothari, V., Presner, J. R., Lonigro, R. J., Iyer, M. K., Barrette, T., Shanmugam, A., Dhanasekaran, S. M., Palanisamy, N., and Chinnaiyan A. M. (2012) Expressed pseudogenes in the transcriptional landscape of human cancers, Cell, 149, 1622–1634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bensimon, A., Heck, A. J., and Aebersold, R. (2012) Mass spectrometry-based proteomics and network biology, Annu. Rev. Biochem., 81, 379–405.

    Article  PubMed  CAS  Google Scholar 

  45. Moreau-Aubry, A., Le Guiner, S., Labarriere, N., Gesnel, M., Jotereau, F., and Breathnach, R. (2000) A processed pseudogene codes for a new antigen recognized by a CD8+ T cell clone on melanoma, J. Exp. Med., 191, 1617–1624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hendrickson, R. C., Cicinnati, V. R., Albers, A., Dworacki, G., Gambotto, A., Pagliano, O., Tuting, T., Mayordomo, J. I., Visus, C., Appella, E., Shabanowitz, J., Hunt, D. F., and DeLeo, A. B. (2010) Identification of a 17beta-hydroxysteroid dehydrogenase type 12 pseudogene as the source of a highly restricted BALB/c Meth A tumor rejection peptide, Cancer Immunol. Immunother., 59, 113–124.

    Article  PubMed  CAS  Google Scholar 

  47. Visus, C., Ito, D., Dhir, R., Szczepanski, M. J., Chang, Y. J., Latimer, J. J., Grant, S. G., and DeLeo, A. B. (2011) Identification of hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) as a CD8+ T-cell-defined human tumor antigen of human carcinomas, Cancer Immunol. Immunother., 60, 919–929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Reynaud, C. A., Anquez, V., Grimal, H., and Weill, J. C. (1987) A hyperconversion mechanism generates the chicken light chain preimmune repertoire, Cell, 48, 379–388.

    Article  PubMed  CAS  Google Scholar 

  49. Reynaud, C. A., Dahan, A., Anquez, V., and Weill, J. C. (1989) Somatic hyperconversion diversifies the single Vh gene of the chicken with a high incidence in the D region, Cell, 59, 171–183.

    Article  PubMed  CAS  Google Scholar 

  50. Bastianello, G., and Arakawa, H. (2017) A double-strand break can trigger immunoglobulin gene conversion, Nucleic Acids Res., 45, 231–243.

    Article  PubMed  CAS  Google Scholar 

  51. Kurosawa, K., and Ohta, K. (2011) Genetic diversification by somatic gene conversion, Genes, 2, 48–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Rygiel, A. M., Beer, S., Simon, P., Wertheim-Tysarowska, K., Oracz, G., Kucharzik, T., Tysarowski, A., Niepokoj, K., Kierkus, J., Jurek, M., Gawlinski, P., Poznanski, J., Bal, J., Lerch, M. M., Sahin-Toth, M., and Weiss, F. U. (2015) Gene conversion between cationic trypsinogen (PRSS1) and the pseudogene trypsinogen 6 (PRSS3P2) in patients with chronic pancreatitis, Hum. Mutat., 36, 350–356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Concolino, P., and Costella, A. (2018) Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency: a comprehensive focus on 233 pathogenic variants of CYP21A2 gene, Mol. Diagn. Ther., 22, 261–280.

    Article  PubMed  CAS  Google Scholar 

  54. Wang, J., Pitarque, M., and Ingelman-Sundberg, M. (2006) 3′-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression, Biochem. Biopys. Res. Commun., 340, 491–497.

    Article  CAS  Google Scholar 

  55. Nakano, M., Fukushima, Y., Yokota, S., Fukami, T., Takamiya, M., Aoki, Y., Yokoi, T., and Nakajima, M. (2015) CYP2A7 pseudogene transcript affects CYP2A6 expression in human liver by acting as a decoy for miR-126, Drug Metab. Dispos., 43, 703–712.

    Article  PubMed  CAS  Google Scholar 

  56. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions, Cell, 136, 215–233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liu, H., Lei, C., He, Q., Pan, Z., Xiao, D., and Tao, Y. (2018) Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer, Mol. Cancer, 17,64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., and Pandolfi, P. P. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology, Nature, 465, 1033–1038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Salmena, L., Poliseno, L., Tay, Y., Kats, L., and Pandolfi, P. P. (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell, 146, 353–358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tay, Y., Rinn, J., and Pandolfi, P. P. (2014) The multilayered complexity of ceRNA crosstalk and competition, Nature, 505, 344–352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. An, Y., Furber, K. L., and Ji, S. (2017) Pseudogenes regulate parental gene expression via ceRNA network, J. Cell. Mol. Med., 21, 185–192.

    Article  PubMed  CAS  Google Scholar 

  62. Johnson, T. S., Li, S., Kho, J. R., Huang, K., and Zhang, Y. (2018) Network analysis of pseudogene-gene relationships: from pseudogene evolution to their functional potentials, Pac. Symp. Biocomput., 23, 536–547.

    PubMed  PubMed Central  Google Scholar 

  63. Barbash, S., Simchovitz, A., Buchman, A. S., Bennett, D. A., Shifman, S., and Soreq, H. (2017) Neuronal-expressed microRNA-targeted pseudogenes compete with coding genes in the human brain, Transl. Psychiatry, 7, e1199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Straniero, L., Rimoldi, V., Samarani, M., Goldwurm, S., Di Fonzo, A., Kruger, R., Deleidi, M., Aureli, M., Solda, G., Duga, S., and Asselta, R. (2017) The GBAP1 pseudo-gene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p, Sci. Rep., 7, 12702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ergun, S., and Oztuzcu, S. (2017) Oncocers: ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways, Tumour Biol., 36, 3129–3136.

    Article  CAS  Google Scholar 

  66. Li, X., Zheng, L., Zhang, F., Hu, J., Chou, J., Liu, Y., Xing, Y., and Xi, T. (2016) STARD13-correlated ceRNA network inhibits EMT and metastasis of breast cancer, Oncotarget, 7, 23197–23211.

    PubMed  PubMed Central  Google Scholar 

  67. Yang, C., Wu, D., Gao, L., Liu, X., Jin, Y., Wang, D., Wang, T., and Li, X. (2016) Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives, Oncotarget, 7, 13479–13490.

    PubMed  PubMed Central  Google Scholar 

  68. Li, C., Zheng, L., Xin, Y., Tan, Z., Zhang, Y., Meng, X., Wang, Z., and Xi, T. (2017) The competing endogenous RNA network of CYP4Z1 and pseudogene CYP4Z2P exerts an anti-apoptotic function in breast cancer, FEBS Lett., 591, 991–1000.

    Article  PubMed  CAS  Google Scholar 

  69. Thomson, D. W., and Dinger, M. E. (2016) Endogenous microRNA sponges: evidence and controversy, Nat. Rev. Genet., 17, 272–283.

    Article  PubMed  CAS  Google Scholar 

  70. Chiefari, E., Iiritano, S., Paonessa, F., Le Pera, I., Arcidiacono, B., Filocamo, M., Foti, D., Liebhaber, S. A., and Brunetti, A. (2010) Pseudogene-mediated posttranscriptional silencing of HMGA1 can result in insulin resistance and type 2 diabetes, Nat. Commun., 1,40.

    Article  PubMed  CAS  Google Scholar 

  71. Bier, A., Oviedo-Landaverde, I., Zhao, J., Mamane, Y., Kandouz, M., and Batist, G. (2009) Connexin43 pseudogene in breast cancer cells offers a novel therapeutic target, Mol. Cancer Ther., 8, 786–793.

    Article  PubMed  CAS  Google Scholar 

  72. Rapicavoli, N. A., Qu, K., Zhang, J., Mikhail, M., Laberge, R.-M., and Chang, H. Y. (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics, eLife, 2, e00762.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Katayama, S., Tomaru, Y., Kasukawa, T., Waki, K., Nakanishi, M., Nakamura, M., Nishida, H., Yap, C. C., Suzuki, M., Kawai, J., Suzuki, H., Carninci, P., Hayashizaki, Y., Wells, C., Frith, M., Ravasi, T., Pang, K. C., Hallinan, J., Mattick, J., Hume, D. A., Lipovich, L., Batalov, S., Engstrom, P. G., Mizuno, Y., Faghihi, M. A., Sandelin, A., Chalk, A. M., Mottagui-Tabar, S., Liang, Z., Lenhard, B., Wahlestedt, C., and RIKEN Genome Exploration Research Group, Genome Science Group (Genome Network Project Core Group) and FANTOM Consortium (2005) Antisense transcription in the mammalian transcriptome, Science, 309, 1564–1566.

    Article  PubMed  Google Scholar 

  74. Engstrom, P. G., Suzuki, H., Ninomiya, N., Akalin, A., Sessa, L., Lavorgna, G., Brozzi, A., Luzi, L., Tan, S. L., Yang, L., Kunarso, G., Ng, E. L., Batalov, S., Wahlestedt, C., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., Wells, C., Bajic, V. B., Orlando, V., Reid, J. F., Lenhard, B., and Lipovich, L. (2006) Complex loci in human and mouse genomes, PLoS Genet., 2, e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Faghihi, M. A., Kocerha, J., Modarresi, F., Engstrom, P. G., Chalk, A. M., Brothers, S. P., Koesema, E., Laurent, G. S., and Wahlestedt, C. (2010) RNAi screen indicates widespread biological function for human natural antisense transcripts, PLoS One, 5, e13177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pelechano, V., and Steinmetz, L. M. (2013) Gene regulation by antisense transcription, Nat. Rev. Genet., 14, 880–893.

    Article  PubMed  CAS  Google Scholar 

  77. Wanowska, E., Kubiak, M. R., Rosikiewicz, W., Makaіowska, I., and Szczesniak, M. W. (2018) Natural antisense transcripts in diseases: from modes of action to targeted therapies, Wiley Interdiscip. Rev. RNA, 9, doi: 10.1002/wrna.1461.

  78. Korneev, S. A., Park, J. H., and O’Shea, M. (1999) Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene, J. Neurosci., 19, 7711–7720.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Ye, X., Fan, F., Bhattacharya, R., Bellister, S., Boulbes, D. R., Wang, R., Xia, L., Ivan, C., Zheng, X., Calin, G. A., Wang, J., Lu, X., and Ellis, L. M. (2015) VEGFR-1 pseudogene expression and regulatory function in human colorectal cancer cells, Mol. Cancer Res., 13, 1274–1282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Carthew, R. W., and Sontheimer, E. J. (2009) Origins and mechanisms of miRNAs and siRNAs, Cell, 136, 642–655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lam, J. K. W., Chow, M. Y. T., Zhang, Y., and Leung, S. W. S. (2015) siRNA versus miRNA as therapeutics for gene silencing, Mol. Ther. Nucleic Acids, 4, e252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ipsaro, J. J., and Joshua-Tor, L. (2015) From guide to target: molecular insights into eukaryotic RNA-interference machinery, Nature Struct. Mol. Biol., 22, 20–28.

    Article  CAS  Google Scholar 

  83. Chan, W. L., and Chang, J. G. (2014) Pseudogene-derived endogenous siRNAs and their function, in Pseudogenes: Functions and Protocols, Methods in Molecular Biology (Poliseno, L., ed.) Vol. 1167, pp. 227–239.

    Article  CAS  Google Scholar 

  84. Tam, O. H., Aravin, A. A., Stein, P., Girard, A., Murchison, E. P., Cheloufi, S., Hodges, E., Anger, M., Sachidanandam, R., Schultz, R. M., and Hannon, G. J. (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes, Nature, 453, 534–538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., Chiba, H., Kohara, Y., Kono, T., Nakano, T., Surani, M. A., Sakaki, Y., and Sasaki, H. (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes, Nature, 453, 539–543.

    Article  PubMed  CAS  Google Scholar 

  86. Pantano, L., Jodar, M., Bak, M., Ballesca, J. L., Tommerup, N., Oliva, R., and Vavouri, T. (2015) The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes, RNA, 21, 1085-1095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Watanabe, T., Cheng, E., Zhong, M., and Lin, H. (2015) Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline, Genome Res., 25, 368–380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Iwasaki, Y. W., Siomi, M. C., and Siomi, H. (2015) PIWI-interacting RNA: its biogenesis and functions, Annu. Rev. Biochem., 84, 405–433.

    Article  PubMed  CAS  Google Scholar 

  89. Watanabe, T., and Lin, H. (2014) Posttranscriptional regulation of gene expression by Piwi proteins and piRNAs, Mol. Cell, 56, 18–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Czech, B., and Hannon, G. J. (2016) One loop to rule them all: the ping-pong cycle and piRNA-guided silencing, Trends Biochem. Sci., 41, 324–337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Weim, J.-W., Huang, K., Yang, C., and Kang, C.-S. (2017) Non-coding RNAs as regulators in epigenetics (review), Oncol. Rep., 37, 3–9.

    Article  Google Scholar 

  92. Wang, C., Wang, L., Ding, Y., Lu, X., Zhang, G., Yang, J., Zheng, H., Wang, H., Jiang, Y., and Xu, L. (2017) LncRNA structural characteristics in epigenetic regulation, Int. J. Mol. Sci., 18, E2659.

    Article  PubMed  CAS  Google Scholar 

  93. Zeineddine, D., Hammoud, A. A., Mortada, M., and Boeuf, H. (2014) The Oct4 protein: more than a magic stemness marker, Am. J. Stem Cells, 5, 74–82.

    Google Scholar 

  94. Hawkins, P. G., and Morris, K. V. (2010) Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5, Transcription, 1, 165–175.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhao, S., Yuan, Q., Hao, H., Guo, Y., Liu, S., Zhang, Y., Wang, J., Liu, H., Wang, F., Liu, K., Ling, E. A., and Hao, A. (2011) Expression of OCT4 pseudogenes in human tumours: lessons from glioma and breast carcinoma, J. Pathol., 223, 672–682.

    Article  PubMed  CAS  Google Scholar 

  96. Wang, L., Guo, Z. Y., Zhang, R., Xin, B., Chen, R., Zhao, J., Wang, T., Wen, W. H., Jia, L. T., Yao, L. B., and Yang, A. G. (2013) Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma, Carcinogenesis, 34, 1773–1781.

    Article  PubMed  CAS  Google Scholar 

  97. Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W., Corcoran, M., Grander, D., and Morris, K. V. (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells, Nat. Struct. Mol. Biol., 20, 440–446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lister, N., Shevchenko, G., Walshe, J. L., Groen, J., Johnsson, P., Vidarsdottir, L., Grander, D., Ataide, S. F., and Morris, K. V. (2017) The molecular dynamics of long noncoding RNA control of transcription in PTEN and its pseudogene, PNAS, 114, 9942–9947.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Liu, J. L., Zhang, W. Q., and Huang, M. Y. (2017) Transcription start site-associated small RNAs in the PTEN gene, Proc. Natl. Acad. Sci. USA, 114, E10510-E10511.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Iyer, M. K., Niknafs, Y. S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., Barrette, T. R., Prensner, J. R., Evans, J. R., Zhao, S., Poliakov, A., Cao, X., Dhanasekaran, S. M., Wu, Y. M., Robinson, D. R., Beer, D. G., Feng, F. Y., Iyer, H. K., and Chinnaiyan, A. M. (2015) The landscape of long noncoding RNAs in the human transcriptome, Nat. Genet., 47, 199–208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kopp, F., and Mendell, J. T. (2018) Functional classification and experimental dissection of long noncoding RNAs, Cell, 172, 393–407.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Anderson, K. M., Anderson, D. M., McAnally, J. R., Shelton, J. M., Bassel-Duby, R., and Olson, E. N. (2016) Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development, Nature, 539, 433–436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Bunch, H. (2018) Gene regulation of mammalian long noncoding RNA, Mol. Genet. Genomics, 293, 1–15.

    Article  PubMed  CAS  Google Scholar 

  104. Sun, Q., Hao, Q., and Prasanth, K. V. (2018) Nuclear long noncoding RNAs: key regulators of gene expression, Trends Genet., 34, 142–157.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  105. Xu, J., and Zhang, J. (2016) Are human translated pseudogenes functional? Mol. Biol. Evol., 33, 755–760.

    Article  PubMed  CAS  Google Scholar 

  106. Gawlik-Rzemieniewska, N., and Bednarek, I. (2016) The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells, Cancer Biol. Ther., 17, 1–10.

    Article  PubMed  CAS  Google Scholar 

  107. Wang, T. H., Lin, Y. S., Chen, Y., Yeh, C. T., Huang, Y. L., Hsieh, T. H., Shieh, T. M., Hsueh, C., and Chen, T. C. (2015) Long non-coding RNA AOC4P suppresses hepato-cellular carcinoma metastasis by enhancing vimentin degradation and inhibiting epithelial-mesenchymal transition, Oncotarget, 6, 23342–23357.

    PubMed  PubMed Central  Google Scholar 

  108. Zhai, L. L., Zhou, J., Zhang, J., Tang, X., Zhou, L. Y., Yin, J. Y., Vanessa, M. D., Peng, W., Lin, J., and Deng, Z. Q. (2017) Down-regulation of pseudogene Vimentin 2p is associated with poor outcome in de novo acute myeloid leukemia, Cancer Biomark., 18, 305–312.

    Article  PubMed  CAS  Google Scholar 

  109. Siddique, H. R., and Saleem, M. (2012) Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences, Stem Cells, 30, 372–378.

    Article  PubMed  CAS  Google Scholar 

  110. Zhou, L. Y., Zhai, L. L., Yin, J. Y., Vanessa, M. E., Zhou, J., Zhang, J., Tang, X., Lin, J., Qian, J., and Deng, Z. Q. (2016) Pseudogene BMI1P1 expression as a novel predictor for acute myeloid leukemia development and prognosis, Oncotarget, 7, 47376–47386.

    PubMed  PubMed Central  Google Scholar 

  111. Dankner, M., Rose, A. A. N., Rajkumar, S., Siegel, P. M., and Watson, I. R. (2018) Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations, Oncogene, 37, 3183–3199.

    Article  PubMed  CAS  Google Scholar 

  112. Karreth, F. A., Reschke, M., Ruocco, A., Ng, C., Chapuy, B., Leopold, V., Sjoberg, M., Keane, T. M., Verma, A., Ala, U., Tay, Y., Wu, D., Seitzer, N., Velasco-Herrera Mdel, C., Bothmer, A., Fung, J., Langellotto, F., Rodig, S. J., Elemento, O., Shipp, M. A., Adams, D. J., Chiarle, R., and Pandolfi, P. P. (2015) The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo, Cell, 161, 319–332.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Huang, C., Yang, Y., and Liu, L. (2015) Interaction of long noncoding RNAs and microRNAs in the pathogenesis of idiopathic pulmonary fibrosis, Physiol. Genomics, 47, 463–469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Liu, T. X., Becker, M. W., Jelinek, J., Wu, W. S., Deng, M., Mikhalkevich, N., Hsu, K., Bloomfield, C. D., Stone, R. M., DeAngelo, D. J., Galinsky, I. A., Issa, J. P., Clarke, M. F., and Look, A. T. (2007) Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation, Nat. Med., 13, 78–83.

    Article  PubMed  CAS  Google Scholar 

  115. Chen, X., Zhu, H., Wu, X., Xie, X., Huang, G., Xu, X., Li, S., and Xing, C. (2016) Downregulated pseudogene CTNNAP1 promote tumor growth in human cancer by downregulating its cognate gene CTNNA1 expression, Oncotarget, 23, 55518–55528.

    Google Scholar 

  116. Yu, W., Chai, H., Li, Y., Zhao, H., Xie, X., Zheng, H., Wang, C., Wang, X., Yang, G., Cai, X., Falck, J. R., and Yang, J. (2012) Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer, Toxicol. Appl. Pharmacol., 1, 73–83.

    Article  CAS  Google Scholar 

  117. Zheng, L., Li, X., Gu, Y., Lv, X., and Xi, T. (2015) The 3′UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1, Breast Cancer Res. Treat., 150, 105–118.

    Article  PubMed  CAS  Google Scholar 

  118. Zheng, L., Li, X., Meng, X., Chou, J., Hu, J., Zhang, F., Zhang, Z., Xing, Y., Liu, Y., and Xi, T. (2016) Competing endogenous RNA networks of CYP4Z1 and pseudogene CYP4Z2P confer tamoxifen resistance in breast cancer, Mol. Cell Endocrinol., 15, 133–142.

    Article  CAS  Google Scholar 

  119. Zhou, L. Y., Yin, J. Y., Tang, Q., Zhai, L. L., Zhang, T. J., Wang, Y. X., Yang, D. Q., Qian, J., Lin, J., and Deng, Z. Q. (2015) High expression of dual-specificity phosphatase 5 pseudogene 1 (DUSP5P1) is associated with poor prognosis in acute myeloid leukemia, Int. J. Clin. Exp. Pathol., 8, 16073–16080.

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Booth, H. A., and Holland, P. W. (2007) Annotation, nomenclature and evolution of four novel homeobox genes expressed in the human germ line, Gene, 387, 7–14.

    Article  PubMed  CAS  Google Scholar 

  121. Ma, H. W., Xie, M., Sun, M., Chen, T. Y., Jin, R. R., Ma, T. S., Chen, Q. N., Zhang, E. B., He, X. Z., De, W., and Zhang, Z. H. (2016) The pseudogene derived long non-coding RNA DUXAP8 promotes gastric cancer cell proliferation and migration via epigenetically silencing PLEKHO1 expression, Oncotarget, 8, 52211–52224.

    PubMed  PubMed Central  Google Scholar 

  122. Sun, M., Nie, F. Q., Zang, C., Wang, Y., Hou, J., Wei, C., Li, W., He, X., and Lu, K. H. (2017) The pseudogene DUXAP8 promotes non-small-cell lung cancer cell proliferation and invasion by epigenetically silencing EGR1 and RHOB, Mol. Ther., 1, 739–751.

    Article  CAS  Google Scholar 

  123. Wei, C. C., Nie, F. Q., Jiang, L. L., Chen, Q. N., Chen, Z. Y., Chen, X., Pan, X., Liu, Z. L., Lu, B. B., and Wang, Z. X. (2017) The pseudogene DUXAP10 promotes an aggressive phenotype through binding with LSD1 and repressing LATS2 and RRAD in non-small cell lung cancer, Oncotarget, 8, 5233–5246.

    PubMed  Google Scholar 

  124. Huang, W., Li, N., Hu, J., and Wang, L. (2016) Inhibitory effect of RNA-mediated knockdown of zinc finger protein 91 pseudogene on pancreatic cancer cell growth and invasion, Oncol. Lett., 12, 1343–1348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Cleynen, I., and Van De Ven, W. J. (2008) The HMGA proteins: a myriad of functions, Int. J. Oncol., 32, 289–305.

    PubMed  CAS  Google Scholar 

  126. De Martino, M., Forzati, F., Arra, C., Fusco, A., and Esposito, F. (2016) HMGA1-pseudogenes and cancer, Oncotarget, 7, 28724–28735.

    PubMed  PubMed Central  Google Scholar 

  127. Gupta, A., Brown, C. T., Zheng, Y. H., and Christoph, A. (2015) Differentially-expressed pseudogenes in HIV-1 infection, Viruses, 7, 5191–5205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Han, L., Yuan, Y., Zheng, S., Yang, Y., Li, J., Edgerton, M. E., Diao, L., Xu, Y., Verhaak, R. G. W., and Liang, H. (2014) The Pan-Cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour sub-types, Nat. Commun., 5, 3963.

    Article  PubMed  CAS  Google Scholar 

  129. Welch, J. D., Baran-Gale, J., Perou, C. M., Sethupathy, P., and Prins, J. F. (2015) Pseudogenes transcribed in breast invasive carcinoma show subtype-specific expression and ceRNA potential, BMC Genomics, 16,113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Shi, X., Nie, F., Wang, Z., and Sun, M. (2016) Pseudogene-expressed RNAs: a new frontier in cancers, Tumour Biol., 37, 1471–1478.

    Article  PubMed  CAS  Google Scholar 

  131. Poliseno, L., Haimovic, A., Christos, P. J., Vega y Saenz de Miera, E. C., Shapiro, R., Pavlick, A., Berman, R. S., Darvishian, F., and Osman, I. (2011) Deletion of PTENP1 pseudogene in human melanoma, J. Invest. Dermatol., 131, 2497–2500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Liu, J., Xing, Y., Xu, L., Chen, W., Cao, W., and Zhang, C. (2017) Decreased expression of pseudogene PTENP1 promotes malignant behaviours and is associated with the poor survival of patients with HNSCC, Sci. Rep., 7, 41179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Dong, L., Qi, P., Xu, M. D., Ni, S. J., Huang, D., Xu, Q. H., Weng, W. W., Tan, C., Sheng, W. Q., Zhou, X. Y., and Du, X. (2015) Circulating CUDR, LSINCT-5 and PTENP1 long noncoding RNAs in sera distinguish patients with gastric cancer from healthy controls, Int. J. Cancer, 137, 1128–1135.

    Article  PubMed  CAS  Google Scholar 

  134. Uchino, K., Hirano, G., Hirahashi, M., Isobe, T., Shirakawa, T., Kusaba, H., Baba, E., Tsuneyoshi, M., and Akashi, K. (2012) Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells, Exp. Cell Res., 318, 1799–1807.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Kovalenko.

Additional information

Original Russian Text © T. F. Kovalenko, L. I. Patrushev, 2018, published in Biokhimiya, 2018, Vol. 83, No. 11, pp. 1643–1662.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, T.F., Patrushev, L.I. Pseudogenes as Functionally Significant Elements of the Genome. Biochemistry Moscow 83, 1332–1349 (2018). https://doi.org/10.1134/S0006297918110044

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918110044

Keywords

Navigation