Skip to main content
Log in

SkQ1 Controls CASP3 Gene Expression and Caspase-3-Like Activity in the Brain of Rats under Oxidative Stress

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Here, we studied the effect of the mitochondria-targeted antioxidant SkQ1 (plastoquinone cationic derivative) on the CASP3 gene expression and caspase-3 activity in rat cerebral cortex and brain mitochondria under normal conditions and in oxidative stress induced by hyperbaric oxygenation (HBO). Under physiological conditions, SkQ1 administration (50 nmol/kg, 5 days) did not affect the CASP3 gene expression and caspase-3-like activity in the cortical cells, as well as caspase-3-like activity in brain mitochondria, but caused a moderate decrease in the content of primary products of lipid peroxidation (LPO) and an increase in the reduced glutathione (GSH) level. HBO-induced oxidative stress (0.5 MPa, 90 min) was accompanied by significant upregulation of CASP3 mRNA and caspase-3-like activity in the cerebral cortex, activation of the mitochondrial enzyme with simultaneous decrease in the GSH content, increase in the glutathione reductase activity, and stimulation of LPO. Administration of SkQ1 before the HBO session maintained the basal levels of the CASP3 gene expression and enzyme activity in the cerebral cortex cells and led to the normalization of caspase-3-like activity and redox parameters in brain mitochondria. We hypothesize that SkQ1 protects brain cells from the HBO-induced oxidative stress due to its antioxidant activity and stimulation of antiapoptotic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DC:

diene conjugate

EPO:

erythropoietin

GR:

glutathione reductase

GSH:

glutathione

HBO:

hyperbaric oxygenation

LPO:

lipid peroxidation

MDA:

malonic dialdehyde

SB:

Schiff bases

References

  1. Circu, M. L., and Aw, T. Y. (2010) Reactive oxygen species, cellular redox systems, and apoptosis, Free Radic. Biol. Med., 48, 749–762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sinha, K., Das, J., Pal, P. B., and Sil, P. C. (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis, Arch. Toxicol., 87, 1157–1180.

    Article  PubMed  CAS  Google Scholar 

  3. Redza-Dutordoir, M., and Averill-Bates, D. A. (2016) Activation of apoptosis signaling pathways by reactive oxy-gen species, Biochim. Biophys. Acta, 1863, 2977–2992.

    Article  PubMed  CAS  Google Scholar 

  4. Clark, J. (2008) Oxygen toxicity, in Physiology and Medicine of Hyperbaric Oxygen Therapy (Neuman, T. S., and Thom, S. R., eds.), Saunders, Philadelphia, PA, pp. 527–563.

  5. Metrailler-Ruchonnet, I., Pagano, A., Carnesecchi, S., Ody, C., Donati, Y., and Argiroffo, C. B. (2007) Bcl-2 protects against hyperoxia-induced apoptosis through inhibition of the mitochondria-dependent pathway, Free Radic. Biol. Med., 42, 1062–1074.

    Article  PubMed  CAS  Google Scholar 

  6. Kim, G. H., Lee, J. J., Lee, S. H., Chung, Y. H., Cho, H. S., Kim, J. A., and Kim, M. K. (2016) Exposure of isoflurane-treated cells to hyperoxia decreases cell viability and activates the mitochondrial apoptotic pathway, Brain Res., 1636, 13–20.

    Article  PubMed  CAS  Google Scholar 

  7. Gore, A., Muralidhar, M., Espey, M. G., Degenhardt, K., and Mantell, L. L. (2010) Hyperoxia sensing: from molec-ular mechanisms to significance in disease, J. Immunotoxicol., 7, 239–254.

    Article  PubMed  CAS  Google Scholar 

  8. Yis, U., Kurul, S. H., Kumral, A., Cilaker, S., Tugyan, K., Genc, S., and Yilmaz, O. (2008) Hyperoxic exposure leads to cell death in the developing brain, Brain Dev., 30, 556–562.

    Article  PubMed  Google Scholar 

  9. Hu, X., Qiu, J., Grafe, M. R., Rea, H. C., Rassin, D. K., and Perez-Polo, J. R. (2003) Bcl-2 family members make different contributions to cell death in hypoxia and/or hyperoxia in rat cerebral cortex, Int. J. Dev. Neurosci., 21, 371–377.

    Article  PubMed  CAS  Google Scholar 

  10. Vnukov, V. V., Milyutina, N. P., Ananyan, A. A., Danilenko, A. O., Gutsenko, O. I., and Verbitsky, E. V. (2013) Effect of the cationic derivative 10-(6′-plasto-quinonyl)decyltriphenylphosphonium (SkQ1) on the intensity of apoptosis and structure of membranes of rat lymphocytes in oxidative stress induced by hyperbaric oxygenation, Vestnik Yuzhn. Res. Center, 9, 78–86.

    Google Scholar 

  11. Song, B., Xie, B., Wang, C., and Li, M. (2011) Caspase-3 is a target gene of c-Jun: ATF2 heterodimers during apoptosis induced by activity deprivation in cerebellar granule neurons, Neurosci. Lett., 505, 76–81.

    Article  PubMed  CAS  Google Scholar 

  12. Parrish, A. B., Freel, C. D., and Kornbluth, S. (2013) Cellular mechanisms controlling caspase activation and function, Cold Spring Harb. Perspect. Biol., 5, 1–24.

    Article  CAS  Google Scholar 

  13. Zhang, L., Wang, K., Lei, Y., Li, Q., Nice, E. C., and Huang, C. (2015) Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response, Free Radic. Biol. Med., 89, 452–465.

    Article  PubMed  CAS  Google Scholar 

  14. Skulachev, V. P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain dis-eases, J. Alzheimer’s Dis., 28, 283–289.

    Article  CAS  Google Scholar 

  15. Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Jr., Zorov, D. B., and Skulachev, V. P. (2011) Mitochondria-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800–826.

    Article  PubMed  CAS  Google Scholar 

  16. Silachev, D. N., Plotnikov, E. Y., Zorova, L. D., Pevzner, I. B., Sumbatyan, N. V., Korshunova, G. A., Gulyaev, M. V., Pirogov, Y. A., Skulachev, V. P., and Zorov, D. B. (2015) Neuroprotective effects of mitochondria-targeted plasto-quinone and thymoquinone in a rat model of brain ischemia/reperfusion injury, Molecules, 20, 14487–14503.

    Article  PubMed  CAS  Google Scholar 

  17. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Mitochondria-targeted plasto-quinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: syn-thesis and in vitro studies, Biochemistry (Moscow), 73, 1273–1287.

    Article  CAS  Google Scholar 

  18. Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic deriva-tives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.

    Article  PubMed  CAS  Google Scholar 

  19. Galkin, I. I., Pletjushkina, O. Y., Zinovkin, R. A., Zakharova, V. V., Birjukov, I. S., Chernyak, B. V., and Popova, E. N. (2014) Mitochondria-targeted antioxidants prevent TNFα-induced endothelial cell damage, Biochemistry (Moscow), 79, 124–130.

    Article  CAS  Google Scholar 

  20. Troy, C. M., and Jean, Y. Y. (2015) Caspases: therapeutic targets in neurologic disease, Neurotherapeutics, 12, 42–48.

    Article  PubMed  CAS  Google Scholar 

  21. Glushakova, O. Y., Glushakov, A. A., Wijesinghe, D. S., Valadka, A. B., Hayes, R. L., and Glushakov, A. V. (2017) Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: implica-tions for chronic neurodegeneration, Brain Circ., 3, 87–108.

    PubMed  PubMed Central  Google Scholar 

  22. Lukash, A. I., Vnukov, V. V., Ananyan, A. A., Milyutina, N. P., and Kvasha, P. N. (1996) Metal-Containing Compounds of Blood Plasma in Hyperbaric Oxygenation (Experimental and Clinical Aspects) [in Russian], RGU Publishers, Rostov-on-Don.

    Google Scholar 

  23. Chistyakov, V. A., Alexandrova, A. A., Milyutina, N. P., Prokof’ev, V. N., Mashkina, E. V., Gutnikova, L. V., Dem’yanenko, S. V., and Serezhenkov, V. A. (2010) Effect of plastoquinone derivative 10-(6′-plastoquinonyl)decylt-riphenylphosphonium (SkQ1) on contents of steroid hor-mones and NOlevel in rats, Biochemistry (Moscow), 75, 1383–1387.

    Article  CAS  Google Scholar 

  24. Eshchenko, N. D., Volsky, G. G., and Prokhorova, M. I. (1982) Methods of Biochemical Investigations (Lipid and Energy Metabolism) (Prokhorova, M. I., ed.) [in Russian], Leningrad University Publishers, Leningrad.

  25. Walsh, J. G., Cullen, S. P., Sheridan, C., Luthi, A. U., Gerner, C., and Martin, S. J. (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases, Proc. Natl. Acad. Sci. USA, 105, 12815–12819.

    Article  PubMed  Google Scholar 

  26. Stalnaya, I. D. (1977) Method of determination of diene conjugation of unsaturated higher fatty acids, in Modern Methods in Biochemistry (Orekhovich, V. N., ed.) [in Russian], Meditsina, Moscow, pp. 63–64.

    Google Scholar 

  27. Stalnaya, I. D., and Garishvili, T. G. (1977) Method of determination of malonic dialdehyde with thiobarbituric acid, in Modern Methods in Biochemistry (Orekhovich, V. N., ed.) [in Russian], Meditsina, Moscow, pp. 66–68.

    Google Scholar 

  28. Bidlack, W. R., and Tappel, A. T. (1973) Fluorescent prod-ucts of phospholipids during lipid peroxidation, Lipids, 8, 203–209.

    Article  PubMed  CAS  Google Scholar 

  29. Bligh, E., and Dyer, W. (1959) Rapid method of lipids extraction and purification, Can. J. Biochem. Physiol., 37, 911–917.

    Article  PubMed  CAS  Google Scholar 

  30. Yusupova, L. B. (1989) Increasing the determination accu-racy of glutathione reductase of red blood cells, Lab. Delo, 4, 19–21.

    Google Scholar 

  31. Ellman, Q. L. (1959) Tissue sulfhydryl groups, Arch. Biochem. Biophys., 82, 70–77.

    Article  PubMed  CAS  Google Scholar 

  32. Mannick, J. B., Schonho, C., Papeta, N., Ghafourifa, P., Szibor, M., Fang, K., and Gaston, B. (2001) S-Nitrosylation of mitochondrial caspases, J. Cell Biol., 154, 1111–1116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tiwari, M., Sharma, L. K., Saxena, A. K., and Godbole, M. M. (2015) Interaction between mitochondria and cas-pases: apoptotic and non-apoptotic roles, Cell Biol., 3, 22–30.

    Article  CAS  Google Scholar 

  34. Zhivotovsky, B., Samali, A., Gahm, A., and Orrenius, S. (1999) Caspases: their intracellular localization and translocation during apoptosis, Cell Death Differ., 6, 644–651.

    Article  PubMed  CAS  Google Scholar 

  35. Samali, A., Zhivotovsky, B., Jones, D. P., and Orrenius, S. (1998) Detection of pro-caspase-3 in cytosol and mito-chondria of various tissues, FEBS Lett., 431, 167–169.

    Article  PubMed  CAS  Google Scholar 

  36. Yakovlev, A. A. (2016) Pleiotropic Proteases in the Brain Functioning: Caspase-3 and Cathepsin B: Doctoral dissertation [in Russian], Moscow.

    Google Scholar 

  37. Kaminsky, Y. G., Kosenko, E. A., Venediktova, N. I., Felipo, V., and Montoliu, V. (2007) Apoptotic markers in the mitochondria, cytosol, and nuclei of brain cells during ammonia toxicity, Neurochem. J., 1, 78–85.

    Article  Google Scholar 

  38. Kosenko, E., Poghosyan, A., and Kaminsky, Y. (2011) Subcellular compartmentalization of proteolytic enzymes in brain regions and the effects of chronic β-amyloid treat-ment, Brain Res., 1369, 184–193.

    Article  PubMed  CAS  Google Scholar 

  39. Liu, W., Wang, G., and Yakovlev, F. G. (2002) Identification and functional analysis of the rat caspase-3 gene promoter, J. Biol. Chem., 277, 8273–8278.

    Article  PubMed  CAS  Google Scholar 

  40. Terraneo, L., and Samaja, M. (2017) Comparative response of brain to chronic hypoxia and hyperoxia, Int. J. Mol. Sci., 18, 2–24.

    Google Scholar 

  41. Wright, C. J., and Dennery, P. A. (2009) Manipulation of gene expression by oxygen: a primer from bedside to bench, Pediatr. Res., 66, 3–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ryu, H., Lee, J., Zaman, K., Kubilis, J., Ferrante, R. J., Ross, B. D., Neve, R., and Ratan, R. R. (2003) Sp1 and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons, J. Neurosci., 23, 3597–3606.

    Article  PubMed  CAS  Google Scholar 

  43. Dasari, A., Bartholomew, J. N., Volonte, D., and Galbiati, F. (2006) Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements, Cancer Res., 66, 10805–10814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Vnukov, V. V., Gutsenko, O. I., Milyutina, N. P., Kornienko, I. V., Ananyan, A. A., Plotnikov, A. A., and Panina, S. B. (2017) SkQ1 regulates expression of Nrf2, ARE-controlled genes encoding antioxidant enzymes, and their activity in cerebral cortex under oxidative stress, Biochemistry (Moscow), 82, 942–952.

    Article  CAS  Google Scholar 

  45. Niture, S. K., and Jaiswal, A. K. (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis, J. Biol. Chem., 287, 9873–9886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Niture, S. K., and Jaiswal, A. K. (2013) Nrf2-induced anti-apoptotic Bcl-xL protein enhances cell survival and drug resistance, Free Radic. Biol. Med., 57, 119–131.

    Article  PubMed  CAS  Google Scholar 

  47. Liang, H., Ran, Q., Jang, Y. C., Holstein, D., Lechleiter, J., McDonald-Marsh, T., Musatov, A., Song, W., Van Remmen, H., and Richardson, A. (2009) Glutathione per-oxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria, Free Radic. Biol. Med., 47, 312–320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yoo, S.-E., Chen, L., Na, R., Liu, Y., Rios, C., Van Remmen, H., Richardson, A., and Ran, Q. (2012) Gpx4 ablation in adult mice results in a lethal phenotype accom-panied by neuronal loss in brain, Free Radic. Biol. Med., 52, 1820–1827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Maguire, J. J., Tyurina, Y. Y., Mohammadyani, D., Kapralov, A. A., Anthonymuthu, T. S., Qua, F., Amoscato, A. A., Sparvero, L. J., Tyurin, V. A., Planas-Iglesias, J., He, R.-R., Klein-Seetharaman, J., Bayir, H., and Kagan, V. E. (2017) Known unknowns of cardiolipin signaling: the best is yet to come, Biochim. Biophys. Acta, 1862, 8–24.

    Article  CAS  Google Scholar 

  50. Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion, Biochim. Biophys. Acta, 1812, 77–86.

    Article  PubMed  CAS  Google Scholar 

  51. Silachev, D. N., Isaev, N. K., Pevzner, I. B., Zorova, L. D., Stelmashook, E. V., Novikova, S. V., Plotnikov, E. Y., Skulachev, V. P., and Zorov, D. B. (2012) The mitochon-dria-targeted antioxidants and remote kidney precondi-tioning ameliorate brain damage through kidney-to-brain crossstalk, PLoS One, 7, 1–11.

    Article  CAS  Google Scholar 

  52. Sifringer, M., Brait, D., Weichelt, U., Zimmerman, G., Endesfelder, S., Brehmer, F., von Haefen, C., Friedman, A., Soreq, H., Bendix, I., Gerstner, B., and Felderhoff-Mueser, U. (2010) Erythropoietin attenuates hyperoxia-induced oxidative stress in the developing rat brain, Brain Behav. Immun., 24, 792–799.

    Article  PubMed  CAS  Google Scholar 

  53. Bailey, D. M., Lundby, C., Berg, R. M., Taudorf, S., Rahmouni, H., Gutowski, M., Mulholland, C. W., Sullivan, J. L., Swenson, E. R., McEneny, J., Young, I. S., Pedersen, B. K., Moller, K., Pietri, S., and Culcasi, M. (2014) On the antioxidant properties of erythropoietin and its association with the oxidative-nitrosative stress response to hypoxia in humans, Acta Physiol. (Oxf.), 212, 175–187.

    Article  CAS  Google Scholar 

  54. Meng, H., Guo, J., Wang, H., Yan, P., Niu X., and Zhang J. (2014) Erythropoietin activates Keap1–Nrf2/ARE pathway in rat brain after ischemia, Int. J. Neurosci., 124, 362–368.

    Article  PubMed  CAS  Google Scholar 

  55. Wu, H., Zhao, J., Chen, M., Wang, H., Yao, Q., Fan, J., and Zhang, M. (2017) The anti-aging effect of erythropoietin via the ERK/Nrf2-Are pathway in aging rats, J. Mol. Neurosci., 61, 449–458.

    Article  PubMed  CAS  Google Scholar 

  56. Firsov, A. M., Kotova, E. A., Orlov, V. N., Antonenko, Y. N., and Skulachev, V. P. (2016) A mitochondria-targeted antioxidant can inhibit peroxidase activity of cytochrome c by detachment of the protein from liposomes, FEBS Lett., 590, 2836–2843.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Milyutina.

Additional information

Original Russian Text © S. B. Panina, O. I. Gutsenko, N. P. Milyutina, I. V. Kornienko, A. A. Ananyan, D. Yu. Gvaldin, A. A. Plotnikov, V. V. Vnukov, 2018, published in Biokhimiya, 2018, Vol. 83, No. 10, pp. 1550–1561.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panina, S.B., Gutsenko, O.I., Milyutina, N.P. et al. SkQ1 Controls CASP3 Gene Expression and Caspase-3-Like Activity in the Brain of Rats under Oxidative Stress. Biochemistry Moscow 83, 1245–1254 (2018). https://doi.org/10.1134/S0006297918100097

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918100097

Keywords

Navigation