Skip to main content
Log in

Prions and Non-infectious Amyloids of Mammals – Similarities and Differences

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Amyloids are highly ordered aggregates of protein fibrils exhibiting cross-β structure formed by intermolecular hydrogen bonds. Pathological amyloid deposition is associated with the development of several socially significant incurable human diseases. Of particular interest are infectious amyloids, or prions, that cause several lethal neurodegenerative diseases in humans and can be transmitted from one organism to another. Because of almost complete absence of criteria for infectious and non-infectious amyloids, there is a lack of consensus, especially, in the definition of similarities and differences between prions and non-infectious amyloids. In this review, we formulated contemporary molecular-biological criteria for identification of prions and non-infectious amyloids and focused on explaining the differences between these two types of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisenberg, D., and Jucker, M. (2012) The amyloid state of proteins in human diseases, Cell, 148, 1188–1203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Nizhnikov, A. A., Antonets, K. S., and Inge-Vechtomov, S. G. (2015) Amyloids: from pathogenesis to function, Biochemistry (Moscow), 80, 1127–1144.

    Article  CAS  Google Scholar 

  3. Fowler, D. M., Koulov, A. V., Balch, W. E., and Kelly, J. W. (2007) Functional amyloid - from bacteria to humans, Trends Biochem. Sci., 32, 217–224.

    Article  PubMed  CAS  Google Scholar 

  4. Bleem, A., and Daggett, V. (2017) Structural and functional diversity among amyloid proteins: agents of disease, building blocks of biology, and implications for molecular engineering, Biotechnol. Bioeng., 114, 7–20.

    Article  PubMed  CAS  Google Scholar 

  5. Prusiner, S. B. (2013) Biology and genetics of prions causing neurodegeneration, Annu. Rev. Genet., 47, 601–623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. MacLea, K. S. (2017) What makes a prion: infectious proteins from animals to yeast, Int. Rev. Cell. Mol. Biol., 329, 227–276.

    Article  PubMed  CAS  Google Scholar 

  7. Kajava, A. V., Baxa, U., and Steven, A. C. (2010) Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils, FASEB J., 24, 1311–1319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J., and Westermark, P. (2014) Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis, Amyloid, 21, 221–224.

    Article  PubMed  Google Scholar 

  9. Lansbury, P. T., Jr., Costa, P. R., Griffiths, J. M., Simon, E. J., Auger, M., Halverson, K. J., Kocisko, D. A., Hendsch, Z. S., Ashburn, T. T., Spencer, R. G. S., Tider, B., and Griffin, R. G. (1995) Structural model for the beta-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide, Nat. Struct. Biol., 2, 990–998.

    Article  PubMed  CAS  Google Scholar 

  10. Shewmaker, F., McGlinchey, R. P., and Wickner, R. B. (2011) Structural insights into functional and pathological amyloid, J. Biol. Chem., 286, 16533–16540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Syed, A. K., and Boles, B. R. (2014) Fold modulating function: bacterial toxins to functional amyloids, Front Microbiol., 5, 401.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Knowles, T. P., Vendruscolo, M., and Dobson, C. M. (2014) The amyloid state and its association with protein misfolding diseases, Nat. Rev. Mol. Cell Biol., 15, 384–396.

    Article  PubMed  CAS  Google Scholar 

  13. Wickner, R. B., Shewmaker, F., Edskes, H., Kryndushkin, D., Nemecek, J., McGlinchey, R., Bateman, D., and Winchester, C. L. (2010) Prion amyloid structure explains templating: how proteins can be genes, FEMS Yeast Res., 8, 980–991.

    Article  CAS  Google Scholar 

  14. Gu, L., Liu, C., Stroud, J. C., Ngo, S., Jiang, L., and Guo, Z. (2014) Antiparallel triple-strand architecture for prefibrillar Aβ42 oligomers, J. Biol. Chem., 289, 27300–27313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Van Melckebeke, H., Wasmer, C., Lange, A., Ab, E., Loquet, A., Bockmann, A., and Meier, B. H. (2010) Atomic-resolution three-dimensional structure of HET-s (218–289) amyloid fibrils by solid-state NMR spectroscopy, J. Am. Chem. Soc., 132, 13765–13775.

    Article  PubMed  CAS  Google Scholar 

  16. Saupe, S. J. (2011) The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility, Semin. Cell. Dev. Biol., 22, 460–468.

    Article  PubMed  CAS  Google Scholar 

  17. Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Vadodaria, K., Rissman, R. A., Singru, P. S., Nilsson, K. P., Simon, R., Schubert, D., Eisenberg, D., Rivier, J., Sawchenko, P., Vale, W., and Riek, R. (2009) Functional amyloids as natural storage of peptide hormones in pitu-itary secretory granules, Science, 325, 328–332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ahmed, A. B., and Kajava, A. V. (2013) Breaking the amy-loidogenicity code: methods to predict amyloids from amino acid sequence, FEBS Lett., 587, 1089–1095.

    Article  PubMed  CAS  Google Scholar 

  19. Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem., 75, 333–366.

    Article  PubMed  CAS  Google Scholar 

  20. Toyama, B. H., and Weissman, J. S. (2011) Amyloid structure: conformational diversity and consequences, Annu. Rev. Biochem., 80, 557–585.

    Article  PubMed  CAS  Google Scholar 

  21. Eanes, E. D., and Glenner, G. G. (1968) X-ray diffraction studies on amyloid filaments, J. Histochem. Cytochem., 16, 673–677.

    Article  PubMed  CAS  Google Scholar 

  22. Bonar, L., Cohen, A. S., and Skinner, M. M. (1969) Characterization of the amyloid fibril as a cross-beta protein, Proc. Soc. Exp. Biol. Med., 131, 1373–1375.

    Article  PubMed  CAS  Google Scholar 

  23. Glenner, G. G., Eanes, E. D., and Page, D. L. (1972) The relation of the properties of Congo Red-stained amyloid fibrils to the β-conformation, J. Histochem. Cytochem., 20, 821–826.

    Article  PubMed  CAS  Google Scholar 

  24. Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B., and Blake, C. C. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction, J. Mol. Biol., 273, 729–739.

    Article  PubMed  CAS  Google Scholar 

  25. LeVine, H., 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T, Methods Enzymol., 309, 274–284.

    Article  PubMed  CAS  Google Scholar 

  26. Prusiner, S. B. (1989) Scrapie prions, Am. Rev. Microbiol., 43, 345–374.

    Article  CAS  Google Scholar 

  27. Kushnirov, V. V., Alexandrov, I. M., Mitkevich, O. V., Shkundina, I. S., and Ter-Avanesyan, M. D. (2006) Purification and analysis of prion and amyloid aggregates, Methods, 39, 50–55.

    Article  PubMed  CAS  Google Scholar 

  28. Khurana, R., Uversky, V. N., Nielsen, L., and Fink, A. L. (2001) Is Congo Red an amyloid-specific dye? J. Biol. Chem., 276, 22715–22721.

    Article  PubMed  CAS  Google Scholar 

  29. Nilsson, M. R. (2004) Techniques to study amyloid fibril formation in vitro, Methods, 34, 151–160.

    Article  PubMed  CAS  Google Scholar 

  30. Manning, M., and Colon, W. (2004) Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward beta-sheet structure, Biochemistry, 43, 11248–11254.

    Article  PubMed  CAS  Google Scholar 

  31. Ryzhova, T. A., Sopova, J. V., Zadorsky, S. P., Siniukova, V. A., Sergeeva, A. V., Galkina, S. A., Nizhnikov, A. A., Shenfeld, A. A., Volkov, K. V., and Galkin, A. P. (2018) Screening for amyloid proteins in the yeast proteome, Curr. Genet., 64, 469–478.

    Article  PubMed  CAS  Google Scholar 

  32. Prusiner, S. B., and Scott, M. R. (1997) Genetics of prions, Annu. Rev. Genet., 31, 139–175.

    Article  PubMed  CAS  Google Scholar 

  33. Gajdusek, D. C. (1991) The transmissible amyloidoses: genetical control of spontaneous generation of infectious amyloid proteins by nucleation of configurational change in host precursors: kuru-CJD-GSS-scrapie-BSE, Eur. J. Epidemiol., 7, 567–577.

    Article  PubMed  CAS  Google Scholar 

  34. Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W., and Dillin, A. (2006) Opposing activities protect against age-onset proteotoxicity, Science, 313, 1604–1610.

    Article  PubMed  CAS  Google Scholar 

  35. Prusiner, S. B. (2001) Shattuck lecture -neurodegenera-tive diseases and prions, N. Engl. J. Med., 344, 1516–1526.

    Article  PubMed  CAS  Google Scholar 

  36. Gajdusek, D. C., Gibbs, C. J., Jr., and Alpers, M. (1966) Experimental transmission of a kuru-like syndrome to chimpanzees, Nature, 209, 794–796.

    Article  PubMed  CAS  Google Scholar 

  37. Gibbs, C. J., Jr., Gajdusek, D. C., Asher, D. M., Alpers, M. P., Beck, E., Daniel, P. M., and Matthews, W. B. (1968) Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee, Science, 161, 388–389.

    Article  PubMed  Google Scholar 

  38. Nathanson, N., Wilesmith, J., and Griot, C. (1997) Bovine spongiform encephalopathy (BSE): causes and conse-quences of a common source epidemic, Am. J. Epidemiol., 145, 959–969.

    Article  PubMed  CAS  Google Scholar 

  39. Ma, J., and Lindquist, S. (1999) De novo generation of a PrPSc-like conformation in living cells, Nat. Cell. Biol., 1, 358–361.

    Article  PubMed  CAS  Google Scholar 

  40. Pan, K. M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, Z., Fletterick, R. J., and Cohen, F. E. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins, Proc. Natl. Acad. Sci. USA, 90, 10962–10966.

    Article  PubMed  CAS  Google Scholar 

  41. Nicotera, P. (2001) A route for prion neuroinvasion, Neuron, 31, 345–348.

    Article  PubMed  CAS  Google Scholar 

  42. Heikenwalder, M., Julius, C., and Aguzzi, A. (2007) Prions and peripheral nerves: a deadly rendezvous, J. Neurosci., 85, 2714–2725.

    CAS  Google Scholar 

  43. Makarava, N., Kovacs, G. G., Bocharova, O., Savtchenko, R., Alexeeva, I., Budka, H., Rohwer, R. G., and Baskakov, I. V. (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals, Acta Neuropathol., 119, 177–187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sun, Y., Makarava, N., Lee, C. I., Laksanalamai, P., Robb, F. T., and Baskakov, I. V. (2008) Conformational stability of PrP amyloid fibrils controls their smallest possible fragment size, J. Mol. Biol., 376, 1155–1167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kushnirov, V. V., and Ter-Avanesyan, M. D. (1998) Structure and replication of yeast prions, Cell, 94, 13–16.

    Article  PubMed  CAS  Google Scholar 

  46. Mena, M. A., Rodriguez-Navarro, J. A., and Yebenes, J. G. (2009) The multiple mechanisms of amyloid deposition, Prion, 3, 5–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Chiti, F., and Dobson, C. M. (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade, Annu. Rev. Biochem., 86, 27–68.

    Article  PubMed  CAS  Google Scholar 

  48. Liebman, S. W., and Chernoff, Y. O. (2012) Prions in yeast, Genetics, 191, 1041–1072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Butler, D. A., Scott, M. R., Bockman, J. M., Borchelt, D. R., Taraboulos, A., Hsiao, K. K., Kingsbury, D. T., and Prusiner, S. B. (1988) Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins, J. Virol., 62, 1558–1564.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Joshi, P., Benussi, L., Furlan, R., Ghidoni, R., and Verderio, C. (2015) Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on Aβ-vesicle interaction, Int. J. Mol. Sci., 16, 4800–4813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Medina, M., and Avila, J. (2014) The role of extracellular tau in the spreading of neurofibrillary pathology, Front Cell. Neurosci., 8, e113.

    Google Scholar 

  52. Eisele, Y. S., Obermuller, U., Heilbronner, G., Baumann, F., Kaeser, S. A., Wolburg, H., Walker, L. C., Staufenbiel, M., Heikenwalder, M., and Jucker, M. (2010) Peripherally applied Aβ-containing inoculates induce cerebral beta-amyloidosis, Science, 330, 980–982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Morales, R., Duran-Aniotz, C., Castilla, J., Estrada, L. D., and Soto, C. (2012) De novo induction of amyloid-β depo-sition in vivo, Mol. Psychiatry, 17, 1347–1353.

    Article  PubMed  CAS  Google Scholar 

  54. Rosen, R. F., Fritz, J. J., Dooyema, J., Cintron, A. F., Hamaguchi, T., Lah, J. J., LeVine, H., 3rd, Jucker, M., and Walker, L. C. (2012) Exogenous seeding of cerebral β-amyloid deposition in βAPP-transgenic rats, J. Neurochem., 120, 660–666.

    Article  PubMed  CAS  Google Scholar 

  55. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., and Nussbaum, R. L. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease, Science, 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  56. Poulopoulos, M., Levy, O. A., and Alcalay, R. N. (2012) The neuropathology of genetic Parkinson’s disease, Mov. Disord., 27, 831–842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Goedert, M., Ghetti, B., and Spillantini, M. G. (2012) Frontotemporal dementia: implications for understanding Alzheimer’s disease, Cold Spring Harb. Perspect. Med., 2, a006254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Danzer, K. M., Kranich, L. R., Ruf, W. P., Cagsal-Getkin, O., Winslow, A. R., Zhu, L., Vanderburg, C. R., and McLean, P. J. (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers, Mol. Neurodegener., 7, 42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Luk, K. C., Kehm, V., Carroll, J., Zhang, B., O’ Brien, P., Trojanowski, J. Q., and Lee, V. M. (2012) Pathological α-synuclein transmission initiates Parkinson-like neuro-degeneration in nontransgenic mice, Science, 338, 949–953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Masuda-Suzukake, M., Nonaka, T., Hosokawa, M., Oikawa, T., Arai, T., Akiyama, H., Mann, D. M., and Hasegawa, M. (2013) Prion-like spreading of pathological α-synuclein in brain, Brain, 136, 1128–1138.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sacino, A. N., Brooks, M., McKinney, A. B., Thomas, M. A., Shaw, G., Golde, T. E., and Giasson, B. I. (2014) Brain injection of α-synuclein induces multiple proteinopathies, gliosis, and a neuronal injury marker, J. Neurosci., 10, 12368–12378.

    Article  CAS  Google Scholar 

  62. Iqbal, K., Liu, F., Gong, C. X., Alonso A. C., and Grundke-Iqbal, I. (2009) Mechanisms of tau-induced neu-rodegeneration, Acta Neuropathol., 118, 53–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kfoury, N., Holmes, B. B., Jiang, H., Holtzman, D. M., and Diamond, M. I. (2012) Trans-cellular propagation of tau aggregation by fibrillar species, J. Biol. Chem., 287, 19440–19451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lasagna-Reeves, C. A., Castillo-Carranza, D. L., Sengupta, U., Sarmiento, J., Troncoso, J., Jackson, G. R., and Kayed, R. (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease, FASEB J., 26, 1946–1959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jaunmuktane, Z., Mead, S., Ellis, M., Wadsworth, J. D., Nicoll, A. J., Kenny, J., Launchbury, F., Linehan, J., Richard-Loendt, A., Walker, A. S., Rudge, P., Collinge, J., and Brandner, S. (2015) Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy, Nature, 525, 247–250.

    Article  PubMed  CAS  Google Scholar 

  66. Frontzek, K., Lutz, M. I., Aguzzi, A., Kovacs, G. G., and Budka, H. (2016) Amyloid-β pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting, Swiss Med. Wkly., 146, w14287.

    PubMed  Google Scholar 

  67. Ridley, R. M., Baker, H. F., Windle, C. P., and Cummings, R. M. (2006) Very-long-term studies of the seeding of beta-amyloidosis in primates, J. Neural. Transm. (Vienna), 113, 1243–1251.

    Article  CAS  Google Scholar 

  68. Meyer-Luehmann, M., Coomaraswamy, J., Bolmont, T., Kaeser, S., Schaefer, C., Kilger, E., Neuenschwander, A., Abramowski, D., Frey, P., Jaton, A. L., Vigouret, J. M., Paganetti, P., Walsh, D. M., Mathews, P. M., Ghiso, J., Staufenbiel, M., Walker, L. C., and Jucker, M. (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host, Science, 313, 1781–1784.

    Article  PubMed  CAS  Google Scholar 

  69. Bu, X. L., Xiang, Y., Jin, W. S., Wang, J., Shen, L. L., Huang, Z. L., Zhang, K., Liu, Y. H., Zeng, F., Liu, J. H., Sun, H. L., Zhuang, Z. Q., Chen, S. H., Yao, X. Q., Giunta, B., Shan, Y. C., Tan, J., Chen, X. W., Dong, Z. F., Zhou, H. D., Zhou, X. F., Song, W., and Wang, Y. J. (2017) Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies, Mol. Psychiatry, doi: 10.1038/mp.2017.204.

    Google Scholar 

  70. Watts, J. C., Condello, C., Stohr, J., Oehler, A., Lee, J., DeArmond, S. J., Lannfelt, L., Ingelsson, M., Giles, K., and Prusiner, S. B. (2014) Serial propagation of distinct strains of Aβ prions from Alzheimer’s disease patients, Proc. Natl. Acad. Sci. USA, 111, 10323–10328.

    Article  PubMed  CAS  Google Scholar 

  71. Elam, J. S., Taylor, A. B., Strange, R., Antonyuk, S., Doucette, P. A., Rodriguez, J. A., Hasnain, S. S., Hayward, L. J., Valentine, J. S., Yeates, T. O., and Hart, P. J. (2003) Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS, Nat. Struct. Biol., 10, 461–467.

    Article  PubMed  CAS  Google Scholar 

  72. Stathopulos, P. B., Rumfeldt, J., Scholz, G. A., Irani, R. A., Frey, H. E., Hallewell, R. A., Lepock, J. R., and Meiering, E. M. (2003) Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro, Proc. Natl. Acad. Sci. USA, 100, 7021–7026.

    Article  PubMed  CAS  Google Scholar 

  73. Chattopadhyay, M., Durazo, A., Sohn, S. H., Strong, C. D., Gralla, E. B., Whitelegge, J. P., and Valentine, J. S. (2008) Initiation and elongation in fibrillation of ALS-linked superoxide dismutase, Proc. Natl. Acad. Sci. USA, 105, 18663–18668.

    Article  PubMed  Google Scholar 

  74. Furukawa, Y., Kaneko, K., Watanabe, S., Yamanaka, K., and Nukina, N. (2013) Intracellular seeded aggregation of mutant Cu,Zn-superoxide dismutase associated with amyotrophic lateral sclerosis, FEBS Lett., 587, 2500–2505.

    Article  PubMed  CAS  Google Scholar 

  75. Grad, L. I., Yerbury, J. J., Turner, B. J., Guest, W. C., Pokrishevsky, E., O’Neill, M. A., Yanai, A., Silverman, J. M., Zeineddine, R., Corcoran, L., Kumita, J. R., Luheshi, L. M., Yousefi, M., Coleman, B. M., Hill, A. F., Plotkin, S. S., Mackenzie, I. R., and Cashman, N. R. (2014) Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms, Proc. Natl. Acad. Sci. USA, 111, 3620–3625.

    Article  PubMed  CAS  Google Scholar 

  76. Westermark, G. T., and Westermark, P. (2009) Serumamyloid A and protein AA: molecular mechanisms of a trans-missible amyloidosis, FEBS Lett., 583, 2685–2690.

    Article  PubMed  CAS  Google Scholar 

  77. Murakami, T., Ishiguro, N., and Higuchi, K. (2013) Transmission of systemic AA amyloidosis in animals, Vet. Pathol., 51, 363–371.

    Article  PubMed  CAS  Google Scholar 

  78. Costa, V., and Scorrano, L. (2012) Shaping the role of mitochondria in the pathogenesis of Huntington’s disease, EMBO J., 31, 1853–1864.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lee, C. Y., Cantle, J. P., and Yang, X. W. (2013) Genetic manipulations of mutant huntingtin in mice: new insights into Huntington’s disease pathogenesis, FEBS J., 280, 4382–4394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Schilling, G., Becher, M. W., Sharp, A. H., Jinnah, H. A., Duan, K., Kotzuk, J. A., Slunt, H. H., Ratovitski, T., Cooper, J. K., Jenkins, N. A., Copeland, N. G., Price, D. L., Ross, C. A., and Borchelt, D. R. (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin, Hum. Mol. Genet., 8, 397–407.

    Article  PubMed  CAS  Google Scholar 

  81. Vonsattel, J. P., and DiFiglia, M. (1998) Huntington disease, J. Neuropathol. Exp. Neurol., 57, 369–384.

    Article  PubMed  CAS  Google Scholar 

  82. Cao, Q., Huang, Y. S., Kan, M. C., and Richter, J. D. (2005) Amyloid precursor proteins anchor CPEB to mem-branes and promote polyadenylation-induced translation, Mol. Cell. Biol., 25, 10930–10939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Si, K., Choi, Y., White-Grindley, E., Majumdar, A., and Kandel, E. (2010) Aplysia CPEB can form prion-like mul-timers in sensory neurons that contribute to long-term facilitation, Cell, 140, 421–435.

    Article  PubMed  CAS  Google Scholar 

  84. Majumdar, A., Cesario, W. C., White-Grindley, E., Jiang, H., Ren, F., Khan, M. R., Li, L., Choi, E. M., Kannan, K., Guo, F., Unruh, J., Slaughter, B., and Si, K. (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory, Cell, 148, 515–529.

    Article  PubMed  CAS  Google Scholar 

  85. Stephan, J. S., Fioriti, L., Lamba, N., Colnaghi, L., Karl, K., Derkatch, I. L., and Kandel, E. R. (2015) The CPEB3 protein is a functional prion that interacts with the actin cytoskeleton, Cell. Rep., 11, 1772–1785.

    Article  PubMed  CAS  Google Scholar 

  86. Hervas, R., Li, L., Majumdar, A., Fernandez-Ramirez Mdel, C., Unruh, J. R., Slaughter, B. D., Galera-Prat, A., Santana, E., Suzuki, M., Nagai, Y., Bruix, M., Casas-Tinto, S., Menendez, M., Laurents, D. V., Si, K., and Carrion-Vazquez, M. (2016) Molecular basis of Orb2 amy-loidogenesis and blockade of memory consolidation, PLoS Biol., 14, e1002361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Heinrich, S. U., and Lindquist, S. (2011) Protein-only mechanism induces self-perpetuating changes in the activ-ity of neuronal Aplysia cytoplasmic polyadenylation ele-ment binding protein (CPEB), Proc. Natl. Acad. Sci. USA, 108, 2999–3004.

    Article  PubMed  Google Scholar 

  88. Si, K., Giustetto, M., Etkin, A., Hsu, R., Janisiewicz, A. M., Miniaci, M. C., Kim, J. H., Zhu, H., and Kandel, E. R. (2003) A neuronal isoform of CREB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in Aplysia, Cell, 115, 893–904.

    Article  PubMed  CAS  Google Scholar 

  89. Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q. X., and Chen, Z. J. (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response, Cell, 146, 448–461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Cai, X., Xu, H., and Chen, Z. J. (2017) Prion-like poly-merization in immunity and inflammation, Cold Spr. Harb. Perspect. Biol., 9, a023580.

    Article  CAS  Google Scholar 

  91. Kryndushkin, D., Pripuzova, N., Burnett, B. G., and Shewmaker, F. (2013) Non-targeted identification of pri-ons and amyloid-forming proteins from yeast and mammalian cells, J. Biol. Chem., 288, 27100–27111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Nizhnikov, A. A., Alexandrov, A. I., Ryzhova, T. A., Mitkevich, O. V., Dergalev, A. A., Ter-Avanesyan, M. D., and Galkin, A. P. (2014) Proteomic screening for amyloid proteins, PLoS One, 9, e116003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Nizhnikov, A. A., Ryzhova, T. A., Volkov, K. V., Zadorsky, S. P., Sopova, J. V., Inge-Vechtomov, S. G., and Galkin, A. P. (2016) Interaction of prions causes heritable traits in Saccharomyces cerevisiae, PLoS Genet., 12, e1006504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Galkin.

Additional information

Original Russian Text © A. P. Galkin, M. E. Velizhanina, Yu. V. Sopova, A. A. Shenfeld, S. P. Zadorsky, 2018, published in Biokhimiya, 2018, Vol. 83, No. 10, pp. 1476–1489.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkin, A.P., Velizhanina, M.E., Sopova, Y.V. et al. Prions and Non-infectious Amyloids of Mammals – Similarities and Differences. Biochemistry Moscow 83, 1184–1195 (2018). https://doi.org/10.1134/S0006297918100048

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918100048

Keywords

Navigation