Skip to main content
Log in

Laccase-Catalyzed Heterocoupling of Dihydroquercetin and p-Aminobenzoic Acid: Effect of the Reaction Product on Cultured Cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Derivatization of the natural flavonoid dihydroquercetin with p-aminobenzoic acid was carried out in an ethyl acetate/citric buffer biphasic system using laccase from the fungus Trametes hirsuta. The main reaction product yield was ~68 mol %. The product was characterized by 1H NMR, 13C NMR, and liquid chromatography-mass spectroscopy, and its structure was elucidated. The reaction product affected viability of cultured human rhabdomyosarcoma cells (RD cell line) in a dose-dependent manner and, therefore, can be of interest to pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

p-aminobenzoic acid

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

COSY:

proton-proton correlation spectroscopy

DHQ:

dihydroquercetin

FBS:

fetal bovine serum

HMBC:

heteronuclear multiple-bond correlation spectroscopy

HSQC:

heteronuclear single quantum correlation spectroscopy

J :

spin-spin coupling constant

oligoDHQ:

dihydroquercetin oligomer

References

  1. Hollmann, F., and Arends, I. W. C. E. (2012) Enzyme initiated radical polymerizations, Polymers, 4, 759–793.

    Article  CAS  Google Scholar 

  2. Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., and Yaropolov, A. I. (2007) “Blue” laccases, Biochemistry (Moscow), 72, 1136–1150.

    Article  CAS  Google Scholar 

  3. Witayakran, S., and Ragauskas, A. J. (2009) Synthetic applications of laccase in green chemistry, Adv. Synth. Catal., 351, 1187–1209.

    Article  CAS  Google Scholar 

  4. Tatsumi, K., Freyer, A., Minard, R. D., and Bollag, J. M. (1994) Enzymatic coupling of chloroanilines with syringic acid, vanillic acid and protocatechuic acid, Soil Biol. Biochem., 26, 735–742.

    Article  CAS  Google Scholar 

  5. Thurston, F. (1994) The structure and function of fungal laccases, Microbiology, 140, 19–26.

    Article  CAS  Google Scholar 

  6. Weidmann, A. E. (2012) Dihydroquercetin: more than just an impurity? Eur. J. Pharmacol., 684, 19–26.

    Article  PubMed  CAS  Google Scholar 

  7. Pantouris, G., and Mowat, Ch. G. (2014) Antitumour agents as inhibitors of tryptophan 2,3–dioxygenase, Biochem. Biophys. Res. Commun., 443, 28–31.

    Article  PubMed  CAS  Google Scholar 

  8. Polyak, S. J., Morishima, Ch., Lohmann, V., Pal, S., Lee, D. Y. W., Liu, Y., and Graf, T. N. (2010) Identification of hepatoprotective flavonolignans from silymarin, PNAS, 107, 5995–5999.

    Article  PubMed  Google Scholar 

  9. Sato, M., Murakami, K., Uno, M., Ikubo, H., Nakagawa, Y., Katayama, S., Akagi, K., and Irie, K. (2013) Structure–activity relationship for (+)–taxifolin isolated from silymarin as an inhibitor of amyloid β aggregation, Biosci. Biotechnol. Biochem., 77, 1100–1103.

    Article  PubMed  CAS  Google Scholar 

  10. Pozharitskaya, O. N., Karlina, M. V., Shikov, A. N., Kosman, V. M., Makarova, M. N., and Makarov, V. G. (2009) Determination and pharmacokinetic study of taxi–folin in rabbit plasma by high–performance liquid chro–matography, Phytomedicine, 16, 244–251.

    Article  PubMed  CAS  Google Scholar 

  11. Ma, C., Yang, L., Wang, W., Yang, F., Zhao, C., and Zu, Y. (2012) Extraction of dihydroquercetin from Larix gmelinii with ultrasound–assisted and microwave–assisted alternant digestion, Int. J. Mol. Sci., 13, 8789–8804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gorshina, E. S., Rusinova, T. V., Biryukov, V. V., Morozova, O. V., Shleev, S. V., and Yaropolov, A. I. (2006) The dynamics of oxidase activity during cultivation of basidiomycetes from the genus Trametes Fr., Appl. Biochem. Microbiol., 42, 558–563.

    Article  CAS  Google Scholar 

  13. Khlupova, M., Vasil’eva, I., Shumakovich, G., Morozova, O., Chertkov, V., Shestakova, A., Kisin, A., and Yaropolov, A. (2016) Laccase–mediated biotransformation of dihydro–quercetin (taxifolin), J. Mol. Catal. B: Enzymatic, 123, 62–66.

    Article  CAS  Google Scholar 

  14. Lisitskaya, K. V., Sokueva, N. A., Malysheva, Yu. G., Ivanov, A. V., Shishkin, S. S., and Syatkin, S. P. (2013) Identification of the functional activity of synthetic polyamine analogues using a biotest system based on high–ly proliferating cultured human cells, Appl. Biochem. Microbiol., 49, 100–105.

    Article  CAS  Google Scholar 

  15. Kovalyova, M. A., Kovalyov, L. I., Toropygin, I. Yu., Shigeev, S. V., Ivanov, A. V., and Shishkin, S. S. (2009) Proteomic analysis of human skeletal muscle (m. vastus lateralis) proteins: identification of 89 gene expression prod–ucts, Biochemistry (Moscow), 74, 1239–1252.

    Article  CAS  Google Scholar 

  16. Pashintseva, N. V., Shishkin, S. S., Lisitskaya, K. V., Kovalev, L. I., Kovaleva, M. A., Eryomina, L. S., Kamenikhina, I. A., Novikova, L. A., and Sadykhov, E. G. (2016) Study of splicing factor, proline–and glutamine–rich by proteomic techniques in human malignant and nonma–lignant cell lines, Protein Peptide Lett., 23, 958–966.

    Article  CAS  Google Scholar 

  17. Shishkin, S., Kovaleva, M., Ivanov, A., Eryomina, L., Lisitskaya, K., Toropugin, I., Kovalev, L., Okhritz, V., and Loran, O. (2011) Comparative proteomic study of proteins in prostate cancer and benign hyperplasia cells, J. Cancer Sci. Ther., S1, 003; doi: 10.4172/1948–5956.S1–003.

    Google Scholar 

  18. Kolesnik, Y. A., Titova, E. V., Chertkov, V. A., Tashlitskiy, V. N., Tichonov, V. P., and Shmatkov, D. A. (2011) Stereoisomeric composition of two bioflavonoids from Larix sibirica, Planta Med., 77, 1266.

    Article  Google Scholar 

  19. Cotterill, P. J., Scheinmann, F., and Stenhouse, I. A. (1978) Extractives from Guttiferae. Pt.34. Kolaflavanone, a new biflavanone from the nuts of Garcinia kola Heckel. Applications of 13C nuclear magnetic resonance in elucidation of the structures of flavonoids, J. Chem. Soc. Perkin Trans., 1, 532–539.

    Article  Google Scholar 

  20. Sinha, R., Joshi, A., Joshi, U. J., Srivastava, S., and Govil, G. (2014) Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR, Eur. J. Med. Chem., 80, 285–294.

    Article  PubMed  CAS  Google Scholar 

  21. Chertkov, V. A., Shestakova, A. K., and Davydov, D. V. (2011) Regioselective N–arylation of nitroazoles. Determination of the structure of N–arylnitroazoles on the basis of NMR spectroscopic data and quantum–chemical calculations, Chem. Heterocycl. Compd., 47, 45–54.

    Article  CAS  Google Scholar 

  22. Ernst, L., Wray, V., Chertkov, V. A., and Sergeyev, N. M. (1977) High resolution proton–coupled 13C NMR spectra of monosubstituted benzenes. Theoretical and empirical correlations of JCH, J. Magn. Reson., 25, 123–139.

    CAS  Google Scholar 

  23. Leshcheva, I. F., Torocheshnikov, V. N., Sergeyev, N. M., Chertkov, V. A., and Khlopkov, V. N. (1991) Iterative line shape analysis of 13C–2D multiplets. II. Toluene–CH2D and toluene–CD3, J. Magn. Reson., 94, 9–19.

    CAS  Google Scholar 

  24. Pashintseva, N. V., Lisitskaya, K. V., Kovalev, L. I., Eremina, L. S., and Sishkin, S. S. (2015) Proteomic investigation of proteins in cultivated cells of rhabdomyosarcoma RD and some other cells of mesenchymal origin, Sovrem. Probl. Nauki Obrazov., 5.

    Google Scholar 

  25. Koushyar, S., Jiang, W. G., and Dart, D. A. (2015) Unveiling the potential of prohibitin in cancer, Cancer Lett., 369, 316–322.

    Article  PubMed  CAS  Google Scholar 

  26. Fan, W., Yang, H., Liu, T., Wang, J., Li, T. W. H., Mavila, N., Tang, Y., Yang, J., Peng, H., Tu, J., Annamalai, A., Noureddin, M., Krishnan, A., Gores, G. J., Martinez–Chantar, M. L., Mato, J. M., and Lu, S. C. (2017) Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells, Hepatology, 65, 1249–1266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Yaropolov.

Additional information

Original Russian Text © M. E. Khlupova, O. V. Morozova, I. S. Vasil’eva, G. P. Shumakovich, N. V. Pashintseva, L. I. Kovalev, S. S. Shishkin, V. A. Chertkov, A. K. Shestakova, A. V. Kisin, A. I. Yaropolov, 2018, published in Biokhimiya, 2018, Vol. 83, No. 8, pp. 1247–1258.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM18-018, July 9, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlupova, M.E., Morozova, O.V., Vasil’eva, I.S. et al. Laccase-Catalyzed Heterocoupling of Dihydroquercetin and p-Aminobenzoic Acid: Effect of the Reaction Product on Cultured Cells. Biochemistry Moscow 83, 992–1001 (2018). https://doi.org/10.1134/S0006297918080102

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918080102

Keywords

Navigation