Skip to main content

Advertisement

Log in

Amphipathic CRAC-Containing Peptides Derived from the Influenza Virus A M1 Protein Modulate Cholesterol-Dependent Activity of Cultured IC-21 Macrophages

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

An Erratum to this article was published on 17 September 2018

This article has been updated

Abstract

Entry of many viral and bacterial pathogens into host cells depends on cholesterol and/or cholesterol-enriched domains (lipid rafts) in the cell membrane. Earlier, we showed that influenza virus A matrix protein M1 contains amphipathic α-helices with exposed cholesterol-recognizing amino acid consensus (CRAC) motifs. In order to test possible functional activity of these motifs, we studied the effects of three synthetic peptides corresponding to the CRAC-containing α-helices of the viral M1 protein on the phagocytic activity of cultured mouse IC-21 macrophages. The following peptides were used: LEVLMEWLKTR (M1 α-helix 3, a.a. 39–49; further referred to as peptide 1), NNMDKAVKLYRKLK (M1 α-helix 6, a.a. 91–105; peptide 2), and GLKNDLLENLQAYQKR (M1 α-helix 13, a.a. 228–243; peptide 3). We found that all three peptides modulated interactions of IC-21 macrophages with non-opsonized 2-μm target particles. The greatest effect was demonstrated by peptide 2: in the presence of 35 μM peptide 2, the phagocytic index of IC-21 macrophages exceeded the control value by 60%; 10–11 mM methyl-β-cyclodextrin abolished this effect. Peptides 1 and 3 exerted weak inhibitory effect in a narrow concentration range of 5–10 μM. The dose-response curves could be approximated by a sum of two (stimulatory and inhibitory) components with different Hill coefficients, suggesting existence of at least two peptide-binding sites with different affinities on the cell surface. CD spectroscopy confirmed that the peptides exhibit structural flexibility in solutions. Altogether, our data indicate that amphipathic CRAC-containing peptides derived from the viral M1 protein modulate lipid raft-dependent processes in IC-21 macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 17 September 2018

    On p. 982 in the list of authors instead of:

    O. V. Bathishchev

    Should read:

    O. V. Batishchev

Abbreviations

CD:

circular dichroism

CRAC:

cholesterol-recognizing amino acid consensus

mβCD:

methyl-β-cyclodextrin

MM :

molecular mass

TFE:

trifluoroethanol

References

  1. Nayak, D. P., and Hui, E. K. (2004) The role of lipid microdomains in virus biology, Subcell. Biochem., 37, 443–491.

    Article  PubMed  CAS  Google Scholar 

  2. Carter, G. C., Bernstone, L., Sangani, D., Bee, J. W., Harder, T., and James, W. (2009) HIV entry in macrophages is dependent on intact lipid rafts, Virology, 386, 192–202.

    Article  PubMed  CAS  Google Scholar 

  3. Dou, X., Li, Y., Han, J., Zarlenga, D. S., Zhu, W., Ren, X., Dong, N., Li., X., and Li, G. (2018) Cholesterol of lipid rafts is a key determinant for entry and post–entry control of porcine rotavirus infection, BMC Vet. Res., 14, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lafont, F., and van der Goot, F. G. (2005) Bacterial invasion via lipid rafts, Cell. Microbiol., 7, 613–620.

    Article  PubMed  CAS  Google Scholar 

  5. Gatfield, J., and Pieters, J. (2000) Essential role for cholesterol in entry of mycobacteria into macrophages, Science, 288, 1647–1650.

    Article  PubMed  CAS  Google Scholar 

  6. Ouellet, H., Johnston, J. B., and Ortiz de Montellano, P. R. (2011) Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis, Trends Microbiol., 19, 530–539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Polyakova, S., Belov, V. N., Hein, B., von Middendorff, C., Schonle, A., and Hell, S. W. (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature, 457, 1159–1162.

    Article  PubMed  CAS  Google Scholar 

  8. Lingwood, D., and Simons, K. (2010) Lipid rafts as a membrane–organizing principle, Science, 327, 46–50.

    Article  PubMed  CAS  Google Scholar 

  9. Hanzal–Bayer, M. F., and Hancock, J. F. (2007) Lipid rafts and membrane traffic, FEBS Lett., 581, 2098–2104.

    Article  PubMed  CAS  Google Scholar 

  10. Sezgin, E., Levental, I., Mayor, S., and Eggeling, C. (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts, Nat. Rev. Mol. Cell Biol., 18, 361–374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Li, H., and Papadopoulos, V. (1998) Peripheral–type ben–zodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern, Endocrinology, 139, 4991–4997.

    Article  PubMed  CAS  Google Scholar 

  12. Li, H., Yao, Z., Degenhardt, B., Teper, G., and Papadopoulos, V. (2001) Cholesterol binding at the cholesterol recognition/interaction amino acid consensus (CRAC) of the peripheral–type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT–CRAC peptide, Proc. Natl. Acad. Sci. USA, 98, 1267–1272.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Epand, R. M. (2008) Proteins and cholesterol–rich domains, Biochim. Biophys. Acta, 1778, 1576–1582.

    Article  PubMed  CAS  Google Scholar 

  14. Epand, R. F., Thomas, A., Brasseur, R., Vishwanathan, S. A., Hunter, E., and Epand, R. M. (2006). Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains, Biochemistry, 45, 6105–6114.

    Article  PubMed  CAS  Google Scholar 

  15. Schroeder, C. (2010). Cholesterol–binding viral proteins in virus entry and morphogenesis, in Subcellular Biochemistry: Cholesterol Binding and Cholesterol Transport Proteins, Springer, Vol. 51, pp. 77–108.

    Chapter  Google Scholar 

  16. Tsfasman, T., Kost, V., Markushin, S., Lotte, V., Koptiaeva, I., Bogacheva, E., Baratova, L., and Radyukhin, V. (2015) Amphipathic alpha–helices and putative cholesterol binding domains of the influenza virus matrix M1 protein are crucial for virion structure organization, Virus Res., 210, 114–118.

    Article  PubMed  CAS  Google Scholar 

  17. Radyukhin, V. A., Dadinova, L. A., Orlov, I. A., and Baratova, L. A. (2018) Amphipathic secondary structure elements and putative cholesterol recognizing amino acid consensus (CRAC) motifs as governing factors of highly specific matrix protein interactions with raft–type membranes in enveloped viruses, J. Biomol. Str. Dynam., 36, 1351–1359.

    Article  CAS  Google Scholar 

  18. Dunina–Barkovskaya, A. Ya., Karpunin, D. V., Lizunov, V. A., and Frolov, V. A. (2003) Macrophage cell line IC–21 as an experimental system for studies of electrophysiology of endocytosis, Biol. Membr. (Moscow), 20, 322–332.

    Google Scholar 

  19. Golovkina, M. S., Skachkov, I. V., Metelev, M. V., Kuzevanov, A. V., Vishniakova, Kh. S., Kireev, I. I., and Dunina–Barkovskaya, A. Ya. (2009) Serum–induced inhibition of the phagocytic activity of cultured macrophages IC–21, Biochemistry (Moscow) Suppl. Ser. A: Membrane Cell Biol., 4, 412–419.

    Google Scholar 

  20. Vishniakova, Kh. S., Kireev, I. I., and Dunina–Barkovskaya, A. Ya. (2011) Effects of cell culture density on phagocytosis parameters in IC–21 macrophages, Biochemistry (Moscow) Suppl. Ser. A: Membrane Cell Biol., 5, 355–363.

    Article  Google Scholar 

  21. Dunina–Barkovskaya, A. Ya., Vishniakova, Kh. S., Cheshev, D. A., Chekanov, N. N., and Bujurina, I. M. (2007) Effects of DMSO and cholesterol–binding peptides on phagocytic activity of cultured macrophages IC–21, Biol. Membr. (Moscow), 24, 451–456.

    Google Scholar 

  22. Ueda, M. J., Ito, T., Ohnishi, S., and Okada, T. S. (1981) Phagocytosis by macrophages. I. Kinetics of adhesion between particles and phagocytes, J. Cell Sci., 51, 173–188.

    PubMed  CAS  Google Scholar 

  23. Dunina–Barkovskaya, A. Ya. (2004) Phagocytosis–three in one: endocytosis, exocytosis, adhesion, Biol. Membr. (Moscow), 21, 245–272.

    Google Scholar 

  24. Iesmantavicius, V., Dogan, J., Jemth, P., Teilum, K., and Kjaergaard, M. (2014) Helical propensity of an intrinsically disordered protein accelerates ligand binding, Angew. Chem. Int., 53, 1548–1551.

    Article  CAS  Google Scholar 

  25. Eiriksdottir, E., Konate, K., Langel, U., Divita, G., and Deshayes, S. (2010) Secondary structure of cell–penetrating peptides controls membrane interaction and insertion, Biochim. Biophys. Acta, 1798, 1119–1128.

    Article  PubMed  CAS  Google Scholar 

  26. Medina, S. H., Miller, S. E., Keim, A. I., Gorka, A. P., Schnermann, M. J., and Schneider, J. P. (2016) An intrin–sically disordered peptide facilitates non–endosomal cell entry, Angew. Chem. Int., 55, 3369–3372.

    Article  CAS  Google Scholar 

  27. Di Veroli, G. Y., Fornari, C., Goldlust, I., Mills, G., Koh, S. B., Bramhall, J. L., Richards, F. M., and Jodrell, D. I. (2015) An automated fitting procedure and software for dose–response curves with multiphasic features, Sci. Reports, 5, 14701.

    Article  CAS  Google Scholar 

  28. Pike, L. J., and Miller, J. M. (1998) Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone–stimulated phosphatidylinositol turnover, J. Biol. Chem., 273, 22298–22304.

    Article  PubMed  CAS  Google Scholar 

  29. Zidovetzki, R., and Levitan, I. (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evi–dence, misconceptions and control strategies, Biochim. Biophys. Acta, 1768, 1311–1324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Peyron, P., Bordier, C., N’Diaye, E.–N., and Maridonneau–Parini, I. (2000) Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with gly–cosylphosphatidylinositol–anchored proteins, J. Immunol., 165, 5186–5191.

    Article  PubMed  CAS  Google Scholar 

  31. Oh, H., Mohler, E. R., Tian, A., Baumgart, T., and Diamond, S. L. (2009) Membrane cholesterol is a biomechanical regulator of neutrophil adhesion, Arterioscler. Thromb. Vasc. Biol., 29, 1290–1297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Viswanathan, G., Jafurulla, M., Kumar, G. A., Raghunand, T. R., and Chattopadhyay, A. (2015) Dissecting the membrane cholesterol requirement for mycobacterial entry into host cells, Chem. Phys. Lipids, 189, 19–27.

    Article  PubMed  CAS  Google Scholar 

  33. De Planque, M. R. R., and Killian, J. A. (2003) Protein–lipid interaction studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring, Mol. Membr. Biol., 20, 271–284.

    Article  PubMed  CAS  Google Scholar 

  34. Hanson, J. M., Gettel, D. L., Tabaei, S. R., Jackman, J., Kim, M. Ch., Sasaki, D. Y., Groves, J. T., Liedberg, B., Cho, N.–J., and Parikh, A. N. (2016) Cholesterol–enriched domain formation induced by viral–encoded, membrane–active amphipathic peptide, Biophys. J., 110, 176–187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dunina–Barkovskaya, A. (2012) Cholesterol–binding peptides and phagocytosis, in Protein Interactions (Cai,J., and Wang, R. E., eds.), IntechOpen, Croatia, pp. 275–290.

    Google Scholar 

  36. Miller, C. M., Brown, A. C., and Mittal, J. (2014) Disorder in cholesterol–binding functionality of CRAC peptides: a molecular dynamics study, J. Phys. Chem. B, 118, 13169–13174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Febbraio, M., Hajjar, D. P., and Silverstein, R. L. (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism, J. Clin. Invest., 108, 785–791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Han, J., Hajjar, D. P., Tauras, J. M., and Nicholson, A. C. (1999) Cellular cholesterol regulates expression of the macrophage type B scavenger receptor, CD36, J. Lipid Res., 40, 830–838.

    PubMed  CAS  Google Scholar 

  39. Epand, R. M., Sayer, B. G., and Epand, R. F. (2003) Peptide–induced formation of cholesterol–rich domains, Biochemistry, 42, 14677–14689.

    Article  PubMed  CAS  Google Scholar 

  40. Rog, T., and Vattulainen, I. (2014) Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft–like membranes? Chem. Phys. Lipids, 184C, 82–104.

    Article  CAS  Google Scholar 

  41. Yang, G., Xu, H., Li, Z., and Li, F. (2014) Interactions of caveolin–1 scaffolding and intramembrane regions containing a CRAC motif with cholesterol in lipid bilayers, Biochim. Biophys. Acta, 1838, 2588–2599.

    Article  PubMed  CAS  Google Scholar 

  42. Cheng, G., Montero, A., Gastaminza, P., Whitten–Bauer, C., Wieland, S. F., Isogawa, M., Fredericksen, B., Selvarajah, S., Gallay, P. A., Ghadiri, M. R., and Chisari, F. V. (2008) A virocidal amphipathic α–helical peptide that inhibits hepatitis C virus infection in vitro, Proc. Natl. Acad. Sci. USA, 105, 3088–3093.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pae, J., and Pooga, M. (2014) Peptide–mediated delivery: an overview of pathways for efficient internalization, Ther. Deliv., 5, 1203–1222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Ya. Dunina-Barkovskaya or V. A. Radyukhin.

Additional information

Published in Russian in Biokhimiya, 2018, Vol. 83, No. 8, pp. 1235–1246.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunina-Barkovskaya, A.Y., Vishnyakova, K.S., Golovko, A.O. et al. Amphipathic CRAC-Containing Peptides Derived from the Influenza Virus A M1 Protein Modulate Cholesterol-Dependent Activity of Cultured IC-21 Macrophages. Biochemistry Moscow 83, 982–991 (2018). https://doi.org/10.1134/S0006297918080096

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918080096

Keywords

Navigation