Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 6, pp 662–673 | Cite as

Aureochromes – Blue Light Receptors

Review

Abstract

A variety of living organisms including bacteria, fungi, animals, and plants use blue light (BL) to adapt to changing ambient light. Photosynthetic forms (plants and algae) require energy of light for photosynthesis, movements, development, and regulation of activity. Several complex light-sensitive systems evolved in eukaryotic cells to use the information of light efficiently with photoreceptors selectively absorbing various segments of the solar spectrum, being the first components in the light signal transduction chain. They are most diverse in algae. Photosynthetic stramenopiles, which received chloroplasts from red algae during secondary symbiosis, play an important role in ecosystems and aquaculture, being primary producers. These taxa acquired the ability to use BL for regulation of such processes as phototropism, chloroplast photo-relocation movement, and photomorphogenesis. A new type of BL receptor–aureochrome (AUREO)–was identified in Vaucheria frigida in 2007. AUREO consists of two domains: bZIP (basic-region leucine zipper) domain and LOV (light-oxygen-voltage-sensing) domain, and thus this photoreceptor is a BL-sensitive transcription factor. This review presents current data on the structure, mechanisms of action, and biochemical features of aureochromes.

Keywords

photoreceptors aureochromes Vaucheria frigida Phaeodactylum tricornutum 

Abbreviations

bHLH

base helix-loop-helix

BL

blue light

BLUF

blue light sensing using FAD

bZIP

basic-region leucine zipper

LOV

light-oxygen-voltage-sensing

LRE

light response elements

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kianianmomeni, A., and Hallmann, A. (2014) Algal pho-toreceptors: in vivo functions and potential applications, Planta, 239, 1–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Ziegler, T., and Moglich, A. (2015) Photoreceptor engineer-ing, Front. Mol. Biosci., 2, doi: 10.3389/fmolb.2015.00030.Google Scholar
  3. 3.
    Kianianmomeni, A., and Hallmann, A. (2016) Algal pho-tobiology: a rich source of unusual light sensitive proteins for synthetic biology and optogenetics, Methods Mol. Biol., 1408, 37–54.CrossRefPubMedGoogle Scholar
  4. 4.
    Fraikin, G. Y., Strakhovskaya, M. G., and Rubin, A. B. (2013) Biological photoreceptors of light dependent regula-tory processes, Biochemistry (Moscow), 78, 1238–1253.CrossRefGoogle Scholar
  5. 5.
    Chattopadhyay, S., Ang, L. H., Puente, P., Deng, X. W., and Wei, N. (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression, Plant Cell, 10, 673–683.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Luo, X. M., Lin, W. H., Zhu, S., Zhu, J. Y., Sun, Y., Fan, X. Y., Cheng, M., Hao, Y., Oh, E., Tian, M., Liu, L., Zhang, M., Xie, Q., Chong, K., and Wang, Z. Y. (2010) Integration of light-and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis, Dev. Cell, 19, 872–883.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li, J., Li G., Wang, H., and Deng, X. W. (2011) Phytochrome signaling mechanisms, Arabidopsis Book, 9, e0148; doi: 10.1199/tab.0148.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ahmad, M., and Cashmore, A. R. (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature, 366, 162–166.CrossRefPubMedGoogle Scholar
  9. 9.
    Lin, C., and Shalitin, D. (2003) Cryptochrome structure and signal transduction, Annu. Rev. Plant Biol., 54, 469–496.CrossRefPubMedGoogle Scholar
  10. 10.
    Mei, Q., and Dvornyk, V. (2015) Evolutionary history of the photolyase/cryptochrome superfamily in eukaryotes, PLoS One, 10, e0135940; doi: 10.1371/journal.pone. 0135940.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yurina, N. P., Mokerova, D. V., and Odintsova, M. S. (2013) Light-inducible stress plastid proteins of pho-totrophs, Russ. J. Plant Physiol., 60, 577–588.CrossRefGoogle Scholar
  12. 12.
    Kami, C., Lorrain, S., Hornitschek, P., and Fankhauser, C. (2010) Light-regulated plant growth and development, Curr. Top. Dev. Biol., 91, 29–66.CrossRefPubMedGoogle Scholar
  13. 13.
    Huala, E., Oeller, P. W., Liscum, E., Han, I. S., Larsen, E., and Briggs, W. R. (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain, Science, 278, 2120–2123.CrossRefPubMedGoogle Scholar
  14. 14.
    Christie, J. M. (2007) Phototropin blue-light receptors, Annu. Rev. Plant Biol., 58, 21–45.CrossRefPubMedGoogle Scholar
  15. 15.
    Suetsugu, N., Mittmann, F., Wagner, G., Hughes, J., and Wada, M. (2005) A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution, Proc. Natl. Acad. Sci. USA, 102, 13705–13709.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hegemann, P., Fuhrmann, M., and Kateriya, S. (2001) Algal sensory photoreceptors, J. Phycol., 37, 668–676.CrossRefGoogle Scholar
  17. 17.
    Foster, K. W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., and Nakanishi, K. (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas, Nature, 311, 756–759.CrossRefPubMedGoogle Scholar
  18. 18.
    Foster, K. W., and Smyth, R. D. (1980) Light antennas in phototactic algae, Microbiol. Rev., 44, 572–630.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A. M., Bamberg, E., and Hegemann, P. (2002) Channelrhodopsin-1: a light-gated proton channel in green algae, Science, 296, 2395–2398.CrossRefPubMedGoogle Scholar
  20. 20.
    Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., and Bamberg, E. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proc. Natl. Acad. Sci. USA, 100, 13940–13945.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sineshchekov, O. A., Jung, K. H., and Spudich, J. L. (2002) Two rhodopsins mediate phototaxis to low-and high-inten-sity light in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 99, 8689–8694.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kato, H. E., Zhang, F., Yizhar, O., Ramakrishnan, C., Nishizawa, T., Hirata, K., Ito, J., Aita, Y., Tsukazaki, T., Hayashi, S., Hegemann, P., Maturana, A. D., Ishitani, R., Deisseroth, K., and Nureki, O. (2012) Crystal structure of the channelrhodopsin light-gated cation channel, Nature, 482, 369–374.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gomelsky, M., and Klug, G. (2002) BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms, Trends Biochem. Sci., 27, 497–500.CrossRefPubMedGoogle Scholar
  24. 24.
    Gomelsky, M., and Hoff, W. D. (2011) Light helps bacteria make important lifestyle decisions, Trends Microbiol., 19, 441–448.CrossRefPubMedGoogle Scholar
  25. 25.
    Fraikin, G. Ya., Strakhovskaya, M. G., Belenikina, N. S., and Rubin, A. B. (2016) LOV and BLUF flavoprotein reg-ulatory photoreceptors of microorganisms and photosenso-ry actuators in optogenetic systems, Moscow Univ. Biol. Sci. Bull., 71, 50–57.CrossRefGoogle Scholar
  26. 26.
    Fiedler, B., Borner, T., and Wilde, A. (2005) Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors, Photochem. Photobiol., 81, 1481–1488.CrossRefPubMedGoogle Scholar
  27. 27.
    Masuda, S., and Bauer, C. E. (2002) AppA is a blue light photoreceptor that anti-represses photosynthesis gene expression in Rhodobacter sphaeroides, Cell, 110, 613–623.CrossRefPubMedGoogle Scholar
  28. 28.
    Tschowri, N., Busse, S., and Hengge, R. (2009) The BLUFEAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli, Genes Dev., 23, 522–534.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mussi, M. A., Gaddy, J. A., Cabruja, M., Arivett, B. A., Viale, A. M., Rasia, R., and Actis, L. A. (2010) The oppor-tunistic human pathogen Acinetobacter baumannii senses and responds to light, J. Bacteriol., 192, 6336–6345.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Takahashi, F., Yamagata, D., Ishikawa, M., Fukamatsu, Y., Ogura, Y., Kasahara, M., Kiyosue, T., Kikuyama, M., Wada, M., and Kataoka, H. (2007) AUREOCHROME, a photoreceptor required for photomorphogenesis in stra-menopiles, Proc. Natl. Acad. Sci. USA, 104, 19625–19630.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ishikawa, M., Takahashi, F., Nozaki, H., Nagasato, C., Motomura, T., and Kataoka, H. (2009) Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes, Planta, 230, 543–552.CrossRefPubMedGoogle Scholar
  32. 32.
    Takahashi, F., Hishinuma, T., and Kataoka, H. (2001) Blue light-induced branching in Vaucheria. Requirement of nuclear accumulation in the irradiated region, Plant Cell. Physiol., 42, 274–285.CrossRefPubMedGoogle Scholar
  33. 33.
    Banerjee, A., Herman, E., Serif, M., Maestre-Reyna, M., Hepp, S., Pokorny, R., Kroth, P. G., Essen, L. O., and Kottke, T. (2016) Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes, Nucleic Acids Res., 44, 5957–5970.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Serif, M., Lepetit, B., Weißert, K., Kroth, P. G., and Rio Bartulos, C. (2017) A fast and reliable strategy to generate TALEN-mediated gene knockouts in the diatom Phaeodactylum tricornutum, Algal Res., 23, 186–195.CrossRefGoogle Scholar
  35. 35.
    Herman, E., and Kottke, T. (2015) Allosterically regulated unfolding of the A′α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain, Biochemistry, 54, 1484–1492.CrossRefPubMedGoogle Scholar
  36. 36.
    Hisatomi, O., Nakatani, Y., Takeuchi, K., Takahashi, F., and Kataoka, H. (2014) Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the tar-get sequence, J. Biol. Chem., 289, 17379–17391.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Conrad, K. S., Manahan, C. C., and Crane, B. R. (2014) Photochemistry of flavoprotein light sensors, Nat. Chem. Biol., 10, 801–809.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Herrou, J., and Crosson, S. (2011) Function, structure and mechanism of bacterial photosensory LOV proteins, Nat. Rev. Microbiol., 9, 713–723.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Harper, S. M., Neil, L. C., and Gardner, K. H. (2003) Structural basis of a phototropin light switch, Science, 301, 1541–1544.CrossRefPubMedGoogle Scholar
  40. 40.
    Moglich, A., and Moffat, K. (2007) Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA, J. Mol. Biol., 373, 112–126.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nash, A. I., McNulty, R., Shillito, M. E., Swartz, T. E., Bogomolni, R. A., Luecke, H., and Gardner, K. H. (2011) Structural basis of photosensitivity in a bacterial light-oxy-gen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein, Proc. Natl. Acad. Sci. USA, 108, 9449–9454.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vaidya, A. T., Chen, C. H., Dunlap, J. C., Loros, J. J., and Crane, B. R. (2011) Structure of a light-activated LOV pro-tein dimer that regulates transcription, Sci. Signal., 4, ra50; doi: 10.1126/scisignal.2001945.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rodriguez-Romero, J., Hedtke, M., Kastner, C., Muller, S., and Fischer, R. (2010) Fungi, hidden in soil or up in the air: light makes a difference, Annu. Rev. Microbiol., 64, 585–610.CrossRefPubMedGoogle Scholar
  44. 44.
    Schwerdtfeger, C., and Linden, H. (2003) VIVID is a flavo-protein and serves as a fungal blue light photoreceptor for photoadaptation, EMBO J., 22, 4846–4855.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Green, J., Crack, J. C., Thomson, A. J., and LeBrun, N. E. (2009) Bacterial sensors of oxygen, Curr. Opin. Microbiol., 12, 145–151.CrossRefPubMedGoogle Scholar
  46. 46.
    Banerjee, A., Herman, E., Kottke, T., and Essen, L. O. (2016) Structure of a native-like aureochrome 1a LOV domain dimer from Phaeodactylum tricornutum, Structure, 24, 171–178.CrossRefPubMedGoogle Scholar
  47. 47.
    Salomon, M., Christie, J. M., Knieb, E., Lempert, U., and Briggs, W. R. (2000) Photochemical and mutational analy-sis of the FMN-binding domain of the plant blue light receptor, phototropin, Biochemistry, 39, 9401–9410.CrossRefPubMedGoogle Scholar
  48. 48.
    Heintz, U., and Schlichting, I. (2016) Blue light-induced LOV domain dimerization enhances the affinity of aure-ochrome 1a for its target DNA sequence, eLife, 5, e11860; doi: 10.7554/eLife.11860.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mitra, D., Yang, X., and Moffat, K. (2012) Crystal struc-tures of aureochrome1 LOV suggest new design strategies for optogenetics, Structure, 20, 698–706.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Essen, L. O., Franz, S., and Banerjee, A. (2017) Structural and evolutionary aspects of algal blue light receptors of the cryptochrome and aureochrome type, J. Plant Physiol., 217, 27–37.CrossRefPubMedGoogle Scholar
  51. 51.
    Chen, Z., Yang, M. K., Li, C. Y., Wang, Y., Zhang, J., Wang, D. B., Zhang, X. E., and Ge, F. (2014) Phosphoproteomic analysis provides novel insights into stress responses in Phaeodactylum tricornutum, a model diatom, J. Proteome Res., 13, 2511–2523.CrossRefPubMedGoogle Scholar
  52. 52.
    Herman, E., Sachse, M., Kroth, P. G., and Kottke, T. (2013) Blue-light-induced unfolding of the Jα helix allows for the dimerization of aureochrome-LOV from the diatom Phaeodactylum tricornutum, Biochemistry, 52, 3094–3101.CrossRefPubMedGoogle Scholar
  53. 53.
    Harper, S. M., Christie, J. M., and Gardner, K. H. (2004) Disruption of the LOV–Jα helix interaction activates pho-totropin kinase activity, Biochemistry, 43, 16184–16192.CrossRefPubMedGoogle Scholar
  54. 54.
    Kroth, P. G., Wilhelm, C., and Kottke, T. (2017) An update on aureochromes: phylogeny–mechanism–function, J. Plant Physiol., 217, 20–26.CrossRefPubMedGoogle Scholar
  55. 55.
    Akiyama, Y., Nakasone, Y., Nakatani, Y., Hisatomi, O., and Terazima, M. (2016) Time-resolved detection of light-induced dimerization of monomeric aureochrome-1 and change in affinity for DNA, J. Phys. Chem., 120, 7360–7370.CrossRefGoogle Scholar
  56. 56.
    Toyooka, T., Hisatomi, O., Takahashi, F., Kataoka, H., and Terazima, M. (2011) Photoreactions of aureochrome-1, Biophys. J., 100, 2801–2809.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Takahashi, F. (2016) Blue-light-regulated transcription fac-tor, Aureochrome, in photosynthetic stramenopiles, J. Plant Res., 129, 189–197.PubMedGoogle Scholar
  58. 58.
    Hisatomi, O., Terauchi, K., Zikihara, K., Ookubo, Y., Nakatani, Y., Takahashi, F., Tokutomi, S., and Kataoka, H. (2013) Blue light-induced conformational changes in a light-regulated transcription factor, Aureochrome-1, Plant Cell. Physiol., 54, 93–106.CrossRefPubMedGoogle Scholar
  59. 59.
    Deng, Y., Yao, J., Fu, G., Guo, H., and Duan, D. (2014) Isolation, expression, and characterization of blue light recep-tor AUREOCHROME gene from Saccharina japonica (Laminariales, Phaeophyceae), Mar. Biotechnol., 16, 135–143.CrossRefPubMedGoogle Scholar
  60. 60.
    Ishikawa, M., Kataoka, H., and Takahashi, F. (2012) Analysis of light-dependent cell morphology and an accumulation response in Ochromonas danica, Cytologia, 77, 465–473.CrossRefGoogle Scholar
  61. 61.
    Huysman, M. J., Fortunato, A. E., Matthijs, M., Costa, B. S., Vanderhaeghen, R., Van den Daele, H., Sachse, M., Inze, D., Bowler, C., Kroth, P. G., Wilhelm, C., Falciatore, A., Vyverman, W., and De Veylder, L. (2013) Aureochome1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in Diatoms (Phaeodactylum tricornutum), Plant Cell., 25, 215–228.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Schellenberger Costa, B., Sachse, M., Jungandreas, A., Bartulos, C. R., Gruber, A., Jakob, T., Kroth, P. G., and Wilhelm, C. (2013) Aureochrome 1a is involved in the pho-toacclimation of the Diatom Phaeodactylum tricornutum, PLoS One, 8, e74451.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Glantz, S. T., Carpenter, E. J., Melkonian, M., Gardner, K. H., Boyden, E. S., Wong, G. K.-S., and Chow, B. Y. (2016) Functional and topological diversity of LOV domain pho-toreceptors, Proc. Natl. Acad. Sci. USA, 113, 1442–1451.CrossRefGoogle Scholar
  64. 64.
    Archibald, J. M. (2015) Endosymbiosis and eukaryotic cell evolution, Curr. Biol., 25, 911–921.CrossRefGoogle Scholar
  65. 65.
    Di Roberto, R. B., and Peisajovich, S. G. (2014) The role of domain shuffling in the evolution of signaling networks, J. Exp. Zool. B Mol. Dev. Evol., 322, 65–72.CrossRefPubMedGoogle Scholar
  66. 66.
    Li, F.-W., Rothfels, C. J., Melkonian, M., Villarreal, J. C., Stevenson, D. W., Graham, S. W., Wong, G. K. S., Mathews, S., and Pryer, K. M. (2015) The origin and evo-lution of phototropins, Front. Plant Sci., 6, 637.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Janouskovec, J., Horak, A., Obornik, M., Lukes, J., and Keeling, P. J. (2010) A common red algal origin of the api-complexan, dinoflagellate, and heterokont plastids, Proc. Natl. Acad. Sci. USA, 107, 10949–10954.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Suetsugu, N., and Wada, M. (2013) Evolution of three LOV blue light receptor families in green plants and photosyn-thetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome, Plant Cell Physiol., 54, 8–23.CrossRefPubMedGoogle Scholar
  69. 69.
    Kasahara, M., Torii, M., Fujita, A., and Tainaka, K. (2010) FMN binding and photochemical properties of plant puta-tive photoreceptors containing two LOV domains, LOV/LOV proteins, J. Biol. Chem., 285, 34765–34772.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kagawa, T., Kasahara, M., Abe, T., Yoshida, S., and Wada, M. (2004) Function analysis of phototropin2 using fern mutants deficient in blue light-induced chloroplast avoid-ance movement, Plant Cell. Physiol., 45, 416–426.CrossRefPubMedGoogle Scholar
  71. 71.
    Grusch, M., Schelch, K., Riedler, R., Reichhart, E., Differ, C., Berger, W., Ingles-Prieto, A., and Janovjak, H. (2014) Spatiotemporally precise activation of engineered receptor tyrosine kinases by light, EMBO J., 33, 1713–1726.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Muller, K., and Weber, W. (2013) Optogenetic tools for mammalian systems, Mol. BioSyst., 9, 596–608.CrossRefPubMedGoogle Scholar
  73. 73.
    Pathak, G. P., Vrana, J. D., and Tucker, C. L. (2013) Optogenetic control of cell function using engineered pho-toreceptors, Biol. Cell, 105, 59–72.CrossRefPubMedGoogle Scholar
  74. 74.
    Ye, H., Daoud-El Baba, M., Peng, R. W., and Fussenegger, M. (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice, Science, 332, 1565–1568.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversityFaculty of BiologySt. PetersburgRussia

Personalised recommendations