Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 6, pp 629–642 | Cite as

Practical Recommendations for Improving Efficiency and Accuracy of the CRISPR/Cas9 Genome Editing System

  • M. N. Karagyaur
  • Y. P. Rubtsov
  • P. A. Vasiliev
  • V. A. Tkachuk
Review

Abstract

CRISPR/Cas9 genome-editing system is a powerful, fairly accurate, and efficient tool for modifying genomic DNA. Despite obvious advantages, it is not devoid of certain drawbacks, such as propensity for introduction of additional nonspecific DNA breaks, insufficient activity against aneuploid genomes, and relative difficulty in delivering its components to cells. In this review, we focus on the difficulties that can limit the use of CRISPR/Cas9 and suggest a number of practical recommendations and information sources that will make it easier for the beginners to work with this outstanding technological achievement of the XXI century.

Keywords

genome editing CRISPR/Cas9 NHEJ HDR HITI gRNA design HDR/HITI template design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J., and Soria, E. (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic ele-ments, J. Mol. Evol., 60, 174–182.CrossRefPubMedGoogle Scholar
  2. 2.
    Sorek, R., Kunin, V., and Hugenholtz, P. (2008) CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea, Nat. Rev. Microbiol., 6, 181–186.CrossRefPubMedGoogle Scholar
  3. 3.
    Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., and Doudna, J. (2013) RNA-programmed genome editing in human cells, Elife, 2, e00471.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR–Cas9 system, Nat. Protoc., 8, 2281–2308.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013) RNA-guided human genome engineering via Cas9, Science, 339, 823–826.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gaj, T., Gersbach, C. A., and Barbas, C. F. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotech., 31, 397–405.CrossRefGoogle Scholar
  7. 7.
    Marraffini, L. A. (2016) The CRISPR–Cas system of Streptococcus pyogenes: function and applications, in Streptococcus pyogenes Basic Biology to Clinical Manifestations (Ferretti, J. J., Stevens, D. L., and Fischetti, V. A., eds.) The University of Oklahoma Health Sciences Center, Oklahoma City, pp. 1–13 (https://www.ncbi.nlm. nih.gov/books/NBK355562/).Google Scholar
  8. 8.
    Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J., and Almendros, C. (2009) Short motif sequences deter-mine the targets of the prokaryotic CRISPR defence sys-tem, Microbiology, 155, 733–740.CrossRefPubMedGoogle Scholar
  9. 9.
    Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., and Doudna, J. A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, 507, 62–67.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Betermier, M., Bertrand, P., and Lopez, B. S. (2014) Is non-homologous end-joining really an inherently error-prone process? PLoS Genetics, 10, e1004086.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lieber, M. R. (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-join-ing pathway, Annu. Rev. Biochem., 79, 181–211.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816–821.CrossRefPubMedGoogle Scholar
  13. 13.
    Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., and Zhang, F. (2013) Double nick-ing by RNA-guided CRISPR–Cas9 for enhanced genome editing specificity, Cell, 154, 1380–1389.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., Goodwin, M. J., Aryee, M. J., and Joung, J. K. (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing, Nat. Biotechnol., 32, 569–576.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., and Zhang, F. (2016) Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84–88.CrossRefPubMedGoogle Scholar
  16. 16.
    Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., and Joung, J. K. (2016) High-fidelity CRISPR–Cas9 nucleases with no detect-able genome-wide off-target effects, Nature, 529, 490–495.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., Van Der Oost, J., Regev, A., Koonin, E. V., and Zhang, F. (2015) Cpf1 is a single RNA-guided endonu-clease of a class 2 CRISPR–Cas system, Cell, 163, 759–771.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim, D., Kim, J., Hur, J. K., Been, K. W., Yoon, S. H., and Kim, J. S. (2016) Genome-wide analysis reveals specifici-ties of Cpf1 endonucleases in human cells, Nat. Biotechnol., 34, 863–868.CrossRefPubMedGoogle Scholar
  19. 19.
    Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., Cradick, T. J., Marraffini, L. A., Bao, G., and Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31, 827–832.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M., Topkar, V. V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A. J., Le, L. P., Aryee, M. J., and Joung, J. K. (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases, Nat. Biotechnol., 33, 187–198.CrossRefPubMedGoogle Scholar
  21. 21.
    Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., Degennaro, E. M., Winblad, N., Choudhury, S. R., Abudayyeh, O. O., Gootenberg, J. S., Wu, W. Y., Scott, D. A., Severinov, K., van Der Oost, J., and Zhang, F. (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array, Nature Biotech., 35, 31–34.CrossRefGoogle Scholar
  22. 22.
    Suzuki, K., and ·Izpisua Belmonte, J. (2017) In vivo genome editing via the HITI method as a tool for gene therapy, J. Hum. Genet., 63, 157–164.CrossRefPubMedGoogle Scholar
  23. 23.
    Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E. J., Hatanaka, F., Yamamoto, M., Araoka, T., Li, Z., Kurita, M., Hishida, T., Li, M., Aizawa, E., Guo, S., Chen, S., Goebl, A., Soligalla, R. D., Qu, J., Jiang, T., Fu, X., Jafari, M., Esteban, C. R., Berggren, W. T., Lajara, J., Nunez-Delicado, E., Guillen, P., Campistol, J. M., Matsuzaki, F., Liu, G. H., Magistretti, P., Zhang, K., Callaway, E. M., Zhang, K., and Belmonte, J. C. I. (2016) In vivo genome editing via CRISPR/Cas9 mediated homol-ogy-independent targeted integration, Nature, 540, 144–149.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chew, W. L., Tabebordbar, M., Cheng, J. K. W., Mali, P., Wu, E. Y., Ng, A. H. M., Zhu, K., Wagers, A. J., and Church, G. M. (2016) A multifunctional AAV-CRISPR-Cas9 and its host response, Nat. Methods, 13, 868–874.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ortinski, P. I., O’Donovan, B., Dong, X., and Kantor, B. (2017) Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing, Mol. Ther. Methods Clin. Dev., 5, 153–164.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hindriksen, S., Bramer, A. J., Truong, M. A., Vromans, M. J. M., Post, J. B., Verlaan-Klink, I., Snippert, H. J., Lens, S. M. A., and Hadders, M. A. (2017) Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells, PLoS One, 12, e0179514.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Addgene.org http://addgene.orgGoogle Scholar
  28. 28.
    Mao, Z., Bozzella, M., Seluanov, A., and Gorbunova, V. (2008) Comparison of nonhomologous end joining and homologous recombination in human cells, DNA Repair (Amst)., 7, 1765–1771.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kouranova, E., Forbes, K., Zhao, G., Warren, J., Bartels, A., Wu, Y., and Cui, X. (2016) CRISPRs for optimal tar-geting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos, Hum. Gene Ther., 27, 464–475.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lee, M. T., Bonneau, A. R., and Giraldez, A. J. (2014) Zygotic genome activation during the maternal-to-zygotic transition, Annu. Rev. Cell Dev. Biol., 30, 581–613.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sato, M., Koriyama, M., Watanabe, S., Ohtsuka, M., Sakurai, T., Inada, E., Saitoh, I., Nakamura, S., and Miyoshi, K. (2015) Direct injection of CRISPR/Cas9-related mRNA into cytoplasm of parthenogenetically acti-vated porcine oocytes causes frequent mosaicism for indel mutations, Int. J. Mol. Sci., 16, 17838–17856.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    D’Astolfo, D. S., Pagliero, R. J., Pras, A., Karthaus, W. R., Clevers, H., Prasad, V., Lebbink, R. J., Rehmann, H., and Geijsen, N. (2015) Efficient intracellular delivery of native proteins, Cell, 161, 674–690.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu, C., Zhang, L., Liu, H., and Cheng, K. (2017) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications, J. Contr. Rel., 266, 17–26.CrossRefGoogle Scholar
  34. 34.
    He, Z. Y., Men, K., Qin, Z., Yang, Y., Xu, T., and Wei, Y. Q. (2017) Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field, Sci. China Life Sci., 60, 458–467.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang, L., Li, F., Dang, L., Liang, C., Wang, C., He, B., Liu, J., Li, D., Wu, X., Xu, X., Lu, A., and Zhang, G. (2016) In vivo delivery systems for therapeutic genome edit-ing, Int. J. Mol. Sci., 17, 626.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    GENScript gRNA Database (https://www.genscript.com/gRNA-database.html).Google Scholar
  37. 37.
    Park, J., Kim, J. S., and Bae, S. (2016) Cas-database: Web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9, Bioinformatics, 32, 2017–2023.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Park, J., Bae, S., and Kim, J. S. (2015) Cas-designer: a web-based tool for choice of CRISPR-Cas9 target sites, Bioinformatics, 31, 4014–4016.CrossRefPubMedGoogle Scholar
  39. 39.
    Optimized CRISPR Design (http://crispr.mit.edu/).Google Scholar
  40. 40.
    Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H. W., Listgarten, J., and Root, D. E. (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9, Nat. Biotechnol., 34, 184–191.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J., and Mateo, J. L. (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool, PLoS One, 10, e0124633.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Benchling (https://benchling.com).Google Scholar
  43. 43.
    Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B., and Valen, E. (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering, Nuceic Acids Res., 44, 272–276.CrossRefGoogle Scholar
  44. 44.
    Sander, J. D., Maeder, M. L., Reyon, D., Voytas, D. F., Joung, J. K., and Dobbs, D. (2010) ZiFiT (zinc finger tar-geter): an updated zinc finger engineering tool, Nucleic Acids Res., 38, 462–468.CrossRefGoogle Scholar
  45. 45.
    Bae, S., Park, J., and Kim, J. S. (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases, Bioinformatics, 30, 1473–1475.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cradick, T. J., Qiu, P., Lee, C. M., Fine, E. J., and Bao, G. (2014) COSMID: a web-based tool for identifying and val-idating CRISPR/Cas off-target sites, Mol. Ther. Nucleic Acids, 3, e214.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ensembl Genome Browser (http://www.ensembl.org/index. html).Google Scholar
  48. 48.
    Database (https://www.ncbi.nlm.nih.gov/nuccore/).Google Scholar
  49. 49.
    Bazykin, G. A., and Kochetov, A. V. (2011) Alternative translation start sites are conserved in eukaryotic genomes, Nucleic Acids Res., 39, 567–577.CrossRefPubMedGoogle Scholar
  50. 50.
    Lin, Y., Cradick, T. J., Brown, M. T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B. M., Vertino, P. M., Stewart, F. J., and Bao, G. (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences, Nucleic Acids Res., 42, 7473–7485.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Kaini, P., Sander, J. D., Joung, J. K., Peterson, R. T., and Yeh, J. R. J. (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system, PLoS One, 8, e68708.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., and Joung, J. K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol., 32, 279–284.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Liu, X., Homma, A., Sayadi, J., Yang, S., Ohashi, J., and Takumi, T. (2016) Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system, Sci. Rep., 6, 19675.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang, T., Wei, J. J., Sabatini, D. M., and Lander, E. S. (2014) Genetic screens in human cells using the CRISPR-Cas9 system, Science, 343, 80–84.CrossRefPubMedGoogle Scholar
  55. 55.
    Thyme, S. B., Akhmetova, L., Montague, T. G., Valen, E., and Schier, A. F. (2016) Internal guide RNA interactions interfere with Cas9-mediated cleavage, Nat. Commun., 7, 11750.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J., and Root, D. E. (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactiva-tion, Nat. Biotechnol., 32, 1262–1267.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bae, S., Kweon, J., Kim, H. S., and Kim, J. S. (2014) Microhomology-based choice of Cas9 nuclease target sites, Nature Methods, 11, 705–706.CrossRefPubMedGoogle Scholar
  58. 58.
    Van Overbeek, M., Capurso, D., Carter, M. M., Thompson, M. S., Frias, E., Russ, C., Reece-Hoyes, J. S., Nye, C., Gradia, S., Vidal, B., Zheng, J., Hoffman, G. R., Fuller, C. K., and May, A. P. (2016) DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks, Mol. Cell, 63, 633–646.CrossRefPubMedGoogle Scholar
  59. 59.
    Chen, X., Rinsma, M., Janssen, J. M., Liu, J., Maggio, I., and Gonзalves, M. A. F. V. (2016) Probing the impact of chromatin conformation on genome editing tools, Nucleic Acids Res., 44, 6482–6492.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Xie, K., Minkenberg, B., and Yang, Y. (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system, Proc. Natl. Acad. Sci. USA, 112, 3570–3575.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang, J., Chen, R., Zhang, R., Ding, S., Zhang, T., Yuan, Q., Guan, G., Chen, X., Zhang, T., Zhuang, H., Nunes, F., Block, T., Liu, S., Duan, Z., Xia, N., Xu, Z., and Lu, F. (2017) The gRNA-miRNA-gRNA ternary cassette com-bining CRISPR/Cas9 with RNAi approach strongly inhibits hepatitis B virus replication, Theranostics, 7, 3090–3105.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cazenave, C., and Uhlenbeck, O. C. (1994) RNA tem-plate-directed RNA synthesis by T7 RNA polymerase, Proc. Natl. Acad. Sci. USA, 91, 6972–6976.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819–823.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    AddGene CRISPR Protocols (https://www.addgene.org/crispr/reference/#protocols).Google Scholar
  65. 65.
    Renkawitz, J., Lademann, C. A., and Jentsch, S. (2014) Mechanisms and principles of homology search during recombination, Nat. Rev. Mol. Cell Biol., 15, 369–683.CrossRefPubMedGoogle Scholar
  66. 66.
    Verma, P., and Greenberg, R. A. (2016) Noncanonical views of homology-directed DNA repair, Genes Devel., 30, 1138–1154.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yang, H., Wang, H., Shivalila, C. S., Cheng, A. W., Shi, L., and Jaenisch, R. (2013) One-step generation of mice carry-ing reporter and conditional alleles by CRISPR/Cas-medi-ated genome engineering, Cell, 154, 1370–1379.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Doudna, J. A., and Sontheimer, E. J. (2014) The use of CRISPR/Cas9, ZFNs, and TALENs in generating site-specific genome alterations, Methods Enzymol., 546, xix-xx; doi: 10.1016/B978-0-12-801185-0.09983-9.Google Scholar
  69. 69.
    GELife HDR Designer (http://dharmacon.gelifesciences.com/gene-editing/crispr-cas9/edit-r-hdr-donor-designer/).Google Scholar
  70. 70.
    Yang, D., Scavuzzo, M. A., Chmielowiec, J., Sharp, R., Bajic, A., and Borowiak, M. (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucle-ases, Sci. Rep., 6, 21264.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chu, V. T., Weber, T., Wefers, B., Wurst, W., Sander, S., Rajewsky, K., and Kuhn, R. (2015) Increasing the efficien-cy of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells, Nat. Biotechnol., 33, 543–548.CrossRefPubMedGoogle Scholar
  72. 72.
    Tyurin-Kuzmin, P. A., Karagyaur, M. N., Rubtsov, Y. P., Dyikanov, D. T., Vasiliev, P. A., and Vorotnikov, A. V. (2018) CRISPR/Cas9-mediated modification of the extreme C-terminus impairs PDGF-stimulated activity of Duox2, Biol. Chem., doi: 10.1515/hsz-2017-0229.Google Scholar
  73. 73.
    Vouillot, L., Thelie, A., and Pollet, N. (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases, G3 (Bethesda), 5, 407–415.CrossRefPubMedCentralGoogle Scholar
  74. 74.
    Brinkman, E. K., Chen, T., Amendola, M., and Van Steensel, B. (2014) Easy quantitative assessment of genome editing by sequence trace decomposition, Nucleic Acids Res., 42, e168.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Truett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A., and Warman, M. L. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT), Biotechniques, 29, 52–54.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Karagyaur
    • 1
    • 2
  • Y. P. Rubtsov
    • 2
  • P. A. Vasiliev
    • 3
  • V. A. Tkachuk
    • 1
    • 2
  1. 1.Lomonosov Moscow State UniversityInstitute of Regenerative MedicineMoscowRussia
  2. 2.Lomonosov Moscow State UniversityFaculty of Fundamental MedicineMoscowRussia
  3. 3.Research Center of Medical GeneticsRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations