Skip to main content

Advertisement

Log in

An Inducible DamID System for Profiling Interactions of Nuclear Lamina Protein Component Lamin B1 with Chromosomes in Mouse Cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

At the level of DNA organization into chromatin, there are mechanisms that define gene expression profiles in specialized cell types. Genes within chromatin regions that are located at the nuclear periphery are generally expressed at lower levels; however, the nature of this phenomenon remains unclear. These parts of chromatin interact with nuclear lamina proteins like Lamin B1 and, therefore, can be identified in a given cell type by chromatin profiling of these proteins. In this study, we created and tested a Dam Identification (DamID) system induced by Cre recombinase using Lamin B1 and mouse embryonic fibroblasts. This inducible system will help to generate genome-wide profiles of chromatin proteins in given cell types and tissues with no need to dissect tissues from organs or separate cells from tissues, which is achieved by using specific regulatory DNA elements and due to the high sensitivity of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Amp[r] :

ampicillin resistance gene

CMV:

cytomegalovirus

Dam:

DNA adenine methyltransferase

DamID:

DNA adenine methyltransferase identification

gDNA:

genomic DNA

mePCR:

methyl PCR (amplification of Dam-methylated genome fragments)

ori:

replication origin

RLA:

Rosa Left Arm

RRA:

Rosa Right Arm

STOP:

transcription terminator

References

  1. Pickersgill, H., Kalverda, B., de Wit, E., Talhout, W., Fornerod, M., and van Steensel, B. (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina, Nat. Genet., 38, 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  2. Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., Eussen, B. H., de Klein, A., Wessels, L., de Laat, W., and van Steensel, B. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, 453, 948–951.

    Article  PubMed  CAS  Google Scholar 

  3. Peric-Hupkes, D., Meuleman, W., Pagie, L., Bruggeman, S. W., Solovei, I., Brugman, W., Gräf, S., Flicek, P., Kerkhoven, R. M., van Lohuizen, M., Reinders, M., Wessels, L., and van Steensel, B. (2010) Molecular maps of the reorganization of genome–nuclear lamina interactions during differentiation, Mol. Cell, 38, 603–613.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Furey, T. S. (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize pro-tein–DNA interactions, Nat. Rev. Genet., 13, 840–852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Aughey, G. N., and Southall, T. D. (2016) Dam it’s good! DamID profiling of protein–DNA interactions, Wiley Interdiscip. Rev. Dev. Biol., 5, 25–37.

    Article  PubMed  CAS  Google Scholar 

  6. Voong, L. N., Xi, L., Sebeson, A. C., Xiong, B., Wang, J. P., and Wang, X. (2016) Insights into nucleosome organization in mouse embryonic stem cells through chemical mapping, Cell, 167, 1555–1570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mieczkowski, J., Cook, A., Bowman, S. K., Mueller, B., Alver, B. H., Kundu, S., Deaton, A. M., Urban, J. A., Larschan, E., Park, P. J., Kingston, R. E., and Tolstorukov, M. Y. (2016) MNase titration reveals differences between nucleosome occupancy and chromatin accessibility, Nat. Commun., 7, 11485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. van Steensel, B., and Henikoff, S. (2000) Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase, Nat. Biotechnol., 18, 424–428.

    Article  PubMed  CAS  Google Scholar 

  9. Greil, F., van der Kraan, I., Delrow, J., Smothers, J. F., de Wit, E., Bussemaker, H. J., van Driel, R., Henikoff, S., and van Steensel, B. (2003) Distinct HP1 and Su(var)3-9 com-plexes bind to sets of developmentally coexpressed genes depending on chromosomal location, Genes Dev., 17, 2825–2838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Greil, F., Moorman, C., and van Steensel, B. (2006) DamID: mapping of in vivo protein–genome interactions using tethered DNA adenine methyltransferase, Methods Enzymol., 410, 342–359.

    Article  PubMed  CAS  Google Scholar 

  11. Wu, F., Olson, B. G., and Yao, J. (2016) DamID-seq: genome-wide mapping of protein–DNA interactions by high throughput sequencing of adenine-methylated DNA fragments, J. Vis. Exp., 107, e53620.

    Google Scholar 

  12. Germann, S., Juul-Jensen, T., Letarnec, B., and Gaudin, V. (2006) DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 tar-get loci, Plant J., 48, 153–163.

    Article  PubMed  CAS  Google Scholar 

  13. Venkatasubrahmanyam, S., Hwang, W. W., Meneghini, M. D., Tong, A. H., and Madhani, H. D. (2007) Genome-wide, as opposed to local, antisilencing is mediated redun-dantly by the euchromatic factors Set1 and H2A.Z, Proc. Natl. Acad. Sci. USA, 104, 16609–16614.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Woolcock, K. J., Gaidatzis, D., Punga, T., and Bühler, M. (2011) Dicer associates with chromatin to repress genome activity in Schizosaccharomyces pombe, Nat. Struct. Mol. Biol., 18, 94–99.

    Article  PubMed  CAS  Google Scholar 

  15. Towbin, B. D., Gonzalez-Aguilera, C., Sack, R., Gaidatzis, D., Kalck, V., Meister, P., Askjaer, P., and Gasser, S. M. (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery, Cell, 150, 934–947.

    Article  PubMed  CAS  Google Scholar 

  16. Gonzalez-Aguilera, C., Ikegami, K., Ayuso, C., de Luis, A., Iniguez, M., Cabello, J., Lieb, J. D., and Askjaer, P. (2014) Genome-wide analysis links emerin to neuromuscu-lar junction activity in Caenorhabditis elegans, Genome Biol., 15, R21.

    Google Scholar 

  17. Schuster, E., McElwee, J. J., Tullet, J. M., Doonan, R., Matthijssens, F., Reece-Hoyes, J. S., Hope, I. A., Vanfleteren, J. R., Thornton, J. M., and Gems, D. (2010) DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO, Mol. Syst. Biol., 6, 399.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Choksi, S. P., Southall, T. D., Bossing, T., Edoff, K., de Wit, E., Fischer, B. E., van Steensel, B., Micklem, G., and Brand, A. H. (2006) Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neu-ral stem cells, Dev. Cell, 11, 775–789.

    Article  PubMed  CAS  Google Scholar 

  19. Southall, T. D., Gold, K. S., Egger, B., Davidson, C. M., Caygill, E. E., Marshall, O. J., and Brand, A. H. (2013) Cell-type-specific profiling of gene expression and chro-matin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells, Dev. Cell, 26, 101–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pindyurin, A. V., Pagie, L., Kozhevnikova, E. N., van Arensbergen, J., and van Steensel, B. (2016) Inducible DamID systems for genomic mapping of chromatin pro-teins in Drosophila, Nucleic Acids Res., 44, 5646–5657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Luo, S. D., Shi, G. W., and Baker, B. S. (2011) Direct tar-gets of the D. melanogaster DSXF protein and the evolution of sexual development, Development, 138, 2761–2771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Laktionov, P. P., White-Cooper, H., Maksimov, D. A., and Beliakin, S. N. (2014) Transcription factor comr acts as a direct activator in the genetic program controlling sper-matogenesis in D. melanogaster, Mol. Biol. (Moscow), 48, 153–165.

    Article  CAS  Google Scholar 

  23. Ilyin, A. A., Ryazansky, S. S., Doronin, S. A., Olenkina, O. M., Mikhaleva, E. A., Yakushev, E. Y., Abramov, Y. A., Belyakin, S. N., Ivankin, A. V., Pindyurin, A. V., Gvozdev, V. A., Klenov, M. S., and Shevelyov, Y. Y. (2017) Piwi inter-acts with chromatin at nuclear pores and promiscuously binds nuclear transcripts in Drosophila ovarian somatic cells, Nucleic Acids Res., 45, 7666–7680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Pindyurin, A. V. (2017) Genome-wide cell type-specific mapping of in vivo chromatin protein binding using an FLP-inducible DamID system in Drosophila, Methods Mol. Biol., 1654, 99–124.

    Article  PubMed  CAS  Google Scholar 

  25. Pindyurin, A. V. (2017) Genomic mapping of chromatin proteins by using Daminv modification of an FLP-depend-ent DamID approach, Dokl. Biochem. Biophys., 472, 15–18.

    Article  PubMed  CAS  Google Scholar 

  26. Green, M. R., and Sambrook, J. (2012) Molecular Cloning: A Laboratory Manual, 4th Edn., Cold Spring Harbor Laboratory Press.

    Google Scholar 

  27. Gibson, D. G. (2011) Enzymatic assembly of overlapping DNA fragments, Methods Enzymol., 498, 349–361.

    Article  PubMed  CAS  Google Scholar 

  28. Dekker, M., Brouwers, C., and te Riele, H. (2003) Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides, Nucleic Acids res., 31, e27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Maddalo, D., Manchado, E., Concepcion, C. P., Bonetti, C., Vidigal, J. A., Han, Y. C., Ogrodowski, P., Crippa, A., Rekhtman, N., de Stanchina, E., Lowe, S. W., and Ventura, A. (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system, Nature, 516, 423–427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Xu, J. (2005) Preparation, culture, and immortalization of mouse embryonic fibroblasts, Curr. Protoc. Mol. Biol., 28, Unit 28.1.

  31. van Steensel, B., Delrow, J., and Henikoff, S. (2001) Chromatin profiling using targeted DNA adenine methyl-transferase, Nat. Genet., 27, 304–308.

    Article  PubMed  CAS  Google Scholar 

  32. van Steensel, B. (2005) Mapping of genetic and epigenetic regulatory networks using microarrays, Nat. Genet., 37, S18–S24.

    Article  PubMed  CAS  Google Scholar 

  33. Chen, C. M., Krohn, J., Bhattacharya, S., and Davies, B. (2011) A comparison of exogenous promoter activity at the ROSA26 locus using a PhiC31 integrase mediated cassette exchange approach in mouse ES cells, PLoS One, 6, e23376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bouabe, H., and Okkenhaug, K. (2013) Gene targeting in mice: a review, Methods Mol. Biol., 1064, 315–336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tosti, L., Ashmore, J., Tan, B. S. N., Carbone, B., Mistri, T. K., Wilson, V., Tomlinson, S. R., and Kaji, K. (2018) Mapping transcription factor occupancy using minimal num-bers of cells in vitro and in vivo, Genome Res., 28, 592–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819–823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hartman, S. C., and Mulligan, R. C. (1988) Two dominant-acting selectable markers for gene transfer studies in mam-malian cells, Proc. Natl. Acad. Sci. USA, 85, 8047–8051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Amendola, M., and van Steensel, B. (2015) Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells, EMBO Rep., 16, 610–617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Robson, M. I., and Schirmer, E. C. (2016) The application of DamID to identify peripheral gene sequences in differen-tiated and primary cells, Methods Mol. Biol., 1411, 359–386.

    Article  PubMed  CAS  Google Scholar 

  40. Chu, V. T., Weber, T., Graf, R., Sommermann, T., Petsch, K., Sack, U., Volchkov, P., Rajewsky, K., and Kühn, R. (2016) Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes, BMC Biotechnol., 16, 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Kozhevnikova.

Additional information

Original Russian Text © E. N. Kozhevnikova, A. E. Leshchenko, A. V. Pindyurin, 2018, published in Biokhimiya, 2018, Vol. 83, No. 5, pp. 763–773.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikova, E.N., Leshchenko, A.E. & Pindyurin, A.V. An Inducible DamID System for Profiling Interactions of Nuclear Lamina Protein Component Lamin B1 with Chromosomes in Mouse Cells. Biochemistry Moscow 83, 586–594 (2018). https://doi.org/10.1134/S0006297918050115

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918050115

Keywords

Navigation