Skip to main content
Log in

New Data on Effects of SkQ1 and SkQT1 on Rat Liver Mitochondria and Yeast Cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mitochondria are involved in many processes in eukaryotic cells. They play a central role in energy conservation and participate in cell metabolism and signaling pathways. Mitochondria are the main source of reactive oxygen species, excessive generation of which provokes numerous pathologies and cell death. One of the most promising approaches to the attenuation of oxidative stress in mitochondria is the use of targeted (i.e., transported exclusively into mitochondria) lipophilic cationic antioxidants. These compounds offer advantages over conventional water-soluble antioxidants because they induce the so-called “mild uncoupling” and can prevent collapse of the membrane potential in low, nontoxic concentrations. A novel mitochondria-targeted antioxidant, SkQT1, was synthesized and tested within the framework of the research project guided by V. P. Skulachev. The results of these experiments were initially reported in 2013; however, one publication was not able to accommodate all the data on the SkQT1 interactions with isolated mitochondria and cells. Here, we examined comparative effects of SkQT1 and SkQ1 on rat liver mitochondria (with broader spectrum of energy parame- ters being studied) and yeast cells. SkQT1 was found to be less effective uncoupler, depolarizing agent, inhibitor of respiration and ATP synthesis, and “opener” of a nonspecific pore compared to SkQ1. At the same time SkQ1 exhibited higher antioxidant activity. Both SkQT1 and SkQ1 prevented oxidative stress and mitochondria fragmentation in yeast cells exposed to t-butyl hydroperoxide and promoted cell survival, with SkQT1 being more efficient than SkQ1. Together with the results presented in 2013, our data suggest that SkQT1 is the most promising mitochondria-targeted antioxidant that can be used for preventing various pathologies associated with the oxidative stress in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ap5A:

P1,P5-di(adenosine-5′)pentaphosphate

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

CsA:

cyclosporin A

mPTP:

mitochondrial permeability transition pore

ROS:

reactive oxygen species

SkQ1:

10-(6′-plasto-quinonyl)decyltriphenylphosphonium

SkQT1:

a mixture of SkQT1(p) and SkQT1(m) in a proportion of 1.4: 1

SkQT1(m):

10-(5′-toluquinonyl)decyltriphenylphosphonium

SkQT1(p):

10-(6′-toluquinonyl)decyltriphenylphosphonium

t-BHP:

tert-butyl hydroperoxide

ΔΨ:

transmembrane electric potential difference

References

  1. Zhang, Y., and Avalos, J. L. (2017) Traditional and novel tools to probe the mitochondrial metabolism in health and disease, Wiley Interdiscip. Rev. Syst. Biol. Med., 9.

    Google Scholar 

  2. Dudek, J. (2017) Role of cardiolipin in mitochondrial sig-naling pathways, Front. Cell. Dev. Biol., 5, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dhingra, R., and Kirshenbaum, L. A. (2014) Regulation of mitochondrial dynamics and cell fate, Circ. J., 78, 803–810.

    Article  PubMed  CAS  Google Scholar 

  4. Sander, L. E., and Garaude, J. (2017) The mitochondrial respiratory chain: a metabolic rheostat of innate immune cell-mediated antibacterial responses, Mitochondrion, pii: S1567–7249.

    Google Scholar 

  5. Georgieva, E., Ivanova, D., Zhelev, Z., Bakalova, R., Gulubova, M., and Aoki, I. (2017) Mitochondrial dysfunc-tion and redox imbalance as a diagnostic marker of “free radical diseases”, Anticancer Res., 37, 5373–5381.

    PubMed  Google Scholar 

  6. Mailloux, R. J. (2016) Application of mitochondria-target-ed pharmaceuticals for the treatment of heart disease, Curr. Pharm. Des., 22, 4763–4779.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, C. H., Wu, S. B., Wu, Y. T., and Wei, Y. H. (2013) Oxidative stress response elicited by mitochondrial dys-function: implication in the pathophysiology of aging, Exp. Biol. Med. (Maywood), 238, 450–460.

    Article  CAS  Google Scholar 

  8. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondr-ial approach, Biochim. Biophys. Acta, 1787, 437–461.

    Article  PubMed  CAS  Google Scholar 

  9. Murphy, M. P., and Smith, R. A. J. (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations, Annu. Rev. Pharmacol. Toxicol., 47, 629–656.

    Article  PubMed  CAS  Google Scholar 

  10. Skulachev, V. P. (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrat-ing ions. The first results and prospects, Biochemistry (Moscow), 72, 1385–1396.

    Article  CAS  Google Scholar 

  11. Green, D. E. (1974) The electromechanochemical model for energy coupling in mitochondria, Biochim. Biophys. Acta, 346, 27–78.

    Article  PubMed  CAS  Google Scholar 

  12. Severina, I. I., Severin, F. F., Korshunova, G. A., Sumbatyan, N. V., Ilyasova, T. M., Simonyan, R. A., Rogov, A. G., Trendeleva, T. A., Zvyagilskaya, R. A., Dugina, V. B., Domnina, L. V., Fetisova, E. K., Lyamzaev, K. G., Vyssokikh, M. Y., Chernyak, B. V., Skulachev, M. V., Skulachev, V. P., and Sadovnichii, V. A. (2013) In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives, FEBS Lett., 587, 2018–2024.

    Article  PubMed  CAS  Google Scholar 

  13. Institute for Laboratory Animal Research (2011) Guide for the Care and Use of Laboratory Animals, National Academies Press (US), Washington (DC).

    Google Scholar 

  14. Rogov, A. G., Trendeleva, T. A., Aliverdieva, D. A., and Zvyagilskaya, R. A. (2016) More about interactions of rho-damine 19 butyl ester with rat liver mitochondria, Biochemistry (Moscow), 81, 432–438.

    Article  CAS  Google Scholar 

  15. Chance, B., and Williams, G. R. (1955) A simple and rapid assay of oxidative phosphorylation, Nature, 175, 1120–1121.

    Article  PubMed  CAS  Google Scholar 

  16. Akerman, K. E., and Wikstrom, M. K. (1976) Safranine as a probe of the mitochondrial membrane potential, FEBS Lett., 68, 191–197.

    Article  PubMed  CAS  Google Scholar 

  17. Bernardi, P., Krauskof, A., Basso, E., Petronilli, V., Blachly-Dyson, E., Di Lisa, F., and Forte, M. A. (2006) The mitochondrial permeability transition from in vitro artifact to disease target, FEBS J., 273, 2077–2099.

    Article  PubMed  CAS  Google Scholar 

  18. Zharova, T. V., and Vinogradov, A. D. (2006) Energy-linked binding of Pi is required for continuous steady-state pro-ton-translocating ATP hydrolysis catalyzed by F0F1 ATP synthase, Biochemistry, 45, 14552–14558.

    Article  PubMed  CAS  Google Scholar 

  19. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz-ing the principle of protein-dye binding, Anal. Biochem., 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  20. Zviagil'skaya, R. A., Zelenshchikova, V. A., Ural'skaya, L. A., and Kotel'nikova, A. V. (1981) Respiratory system of Endomyces magnusii. Properties of mitochondria from cells grown on glycerol, Biochemistry (Moscow), 46, 3–10.

    Google Scholar 

  21. Adamikova, L., Griac, P., Tomaska, L., and Nosek, J. (1998) Development of a transformation system for the multinuclear yeast Dipodascus (Endomyces) magnusii, Yeast, 14, 805–812.

    Article  PubMed  CAS  Google Scholar 

  22. Agnello, M., Morici, G., and Rinaldi, A. M. (2008) A method for measuring mitochondrial mass and activity, Cytotechnology, 56, 145–149.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Puleston, D. (2015) Detection of mitochondrial mass, damage, and reactive oxygen species by flow cytometry, Cold Spring Harb. Protoc., doi:10.1101/pdb.prot086298.

    Google Scholar 

  24. Mukhopadhyay, P., Rajesh, M., Hasko, G., Hawkins, B. J., Madesh, M., and Pacher, P. (2007) Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy, Nature Protocols, 2, 2295–2301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sukhanova, E. I., Trendeleva, T. A., and Zvyagilskaya, R. A. (2010) Interaction of yeast mitochondria with fatty acids and mitochondria-targeted lipophilic cations, Biochemistry (Moscow), 75, 139–144.

    Article  CAS  Google Scholar 

  26. Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663–668.

    Article  PubMed  Google Scholar 

  27. Skulachev, V. P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Q. Rev. Biophys., 29, 169–202.

    Article  PubMed  CAS  Google Scholar 

  28. Starkov, A. A. (1997) “Mild” uncoupling of mitochondria, Biosci. Rep., 17, 273–279.

    Article  PubMed  CAS  Google Scholar 

  29. Skulachev, V. P. (1998) Uncoupling: new approaches to an old problem of bioenergetics, Biochim. Biophys. Acta, 1363, 100–124.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Zvyagilskaya.

Additional information

Published in Russian in Biokhimiya, 2018, Vol. 83, No. 5, pp. 724–734.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogov, A.G., Goleva, T.N., Trendeleva, T.A. et al. New Data on Effects of SkQ1 and SkQT1 on Rat Liver Mitochondria and Yeast Cells. Biochemistry Moscow 83, 552–561 (2018). https://doi.org/10.1134/S0006297918050085

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918050085

Keywords

Navigation