Skip to main content
Log in

Regulated Gene Expression as a Tool for Analysis of Heterochromatin Position Effect in Drosophila

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Position effect variegation (PEV) is a perturbation of genes expression resulting from the changes in their chromatin organization due to the abnormal juxtaposition with heterochromatin. The exact molecular mechanisms of PEV remain enigmatic in spite of the long history of PEV studies. Here, we developed a genetic model consisting of PEV-inducing chromosome rearrangement and a reporter gene under control of the UAS regulatory element. Expression of the reporter gene could be regulated by adjustment of the GAL4 transactivator activity. Two UAS-based systems of expression control were tested–with thermosensitive GAL4 repressor GAL80ts and GAL4-based artificial transactivator GeneSwitch. Both systems were able to regulate the expression of the UAS-controlled reporter gene over a wide range, but GAL80ts repressed the reporter gene more efficiently. Measurements of the heterochromatin-mediated repression of the reporter gene in the GAL4+GAL80ts system point to the existence of a threshold level of expression, above which no PEV is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PEV:

position effect variegation

UAS-eGFP-Ret :

insertion of the reporter gene UAS-eGFP in the Ret gene

References

  1. Elgin, S. C., and Reuter, G. (2013) Position-effect variega-tion, heterochromatin formation, and gene silencing in Drosophila, Cold Spring Harb. Perspect. Biol., 5, a017780.

    Google Scholar 

  2. Muller, H. J. (1930) Types of visible variations induced by X-rays in Drosophila, J. Genet., 22, 299.

    Article  Google Scholar 

  3. Spofford, J. B. (1976) Position-effect variegation in Drosophila, in The Genetics and Biology of Drosophila, Academic Press.

    Google Scholar 

  4. Weiler, K. S., and Wakimoto, B. T. (1995) Heterochromatin and gene expression in Drosophila, Annu. Rev. Genet., 29, 577–605.

    Article  PubMed  CAS  Google Scholar 

  5. Zhimulev, I. F., Belyaeva, E. S., Fomina, O. V., Protopopov, M. O., and Bolshakov, V. N. (1986) Cytogenetic and molec-ular aspects of position effect variegation in Drosophila melanogaster, Chromosoma, 94, 492–504.

    Article  CAS  Google Scholar 

  6. Prokofyeva-Belgovskaya, A. A. (1945) Heterochromatini-zation as a change of chromosome cycle, Zh. Obshch. Biol., 4, 93–124 (Russian version)

    Google Scholar 

  7. Prokofyeva-Belgovskaya, A. A. (1947) Heterochromatinization as a change of chromo-some cycle, J. Genet., 48, 80–98 (English version).

    Article  PubMed  CAS  Google Scholar 

  8. Reuter, G., and Spierer, P. (1992) Position effect variega-tion and chromatin proteins, Bioessays, 14, 605–612.

    Article  PubMed  CAS  Google Scholar 

  9. Singh, J., Freeling, M., and Lisch, D. (2008) A position effect on the heritability of epigenetic silencing, PLoS Genet., 4, e1000216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Abramov, Y. A., Shatskikh, A. S., Maksimenko, O. G., Bonaccorsi, S., Gvozdev, V. A., and Lavrov, S. A. (2016) The differences between cis-and trans-gene inactivation caused by heterochromatin in Drosophila, Genetics, 202, 93–106.

    Article  PubMed  CAS  Google Scholar 

  11. Lavrov, S. A., Shatskikh, A. S., Kibanov, M. V., and Gvozdev, V. A. (2013) Correlation on a cellular level of gene transcriptional silencing and heterochromatin compart-ment dragging in case of PEV-producing eu-heterochro-matin rearrangement in Drosophila melanogaster, Mol. Biol. (Moscow), 47, 286–291.

    Article  CAS  Google Scholar 

  12. Abramov, Y. A., Kibanov, M. V., Gvozdev, V. A., and Lavrov, S. A. (2011) Genetic and molecular analysis of gene trans-inactivation caused by homologous eu-heterochro-matic chromosome rearrangement in Drosophila melanogaster, Dokl. Biochem. Biophys., 437, 72–76.

    Article  PubMed  CAS  Google Scholar 

  13. Csink, A. K., Bounoutas, A., Griffith, M. L., Sabl, J. F., and Sage, B. T. (2002) Differential gene silencing by trans-heterochromatin in Drosophila melanogaster, Genetics, 160, 257–269.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Csink, A. K., and Henikoff, S. (1996) Genetic modification of heterochromatic association and nuclear organization in Drosophila, Nature, 381, 529–531.

    Article  PubMed  CAS  Google Scholar 

  15. Talbert, P. B., Leciel, C. D., and Henikoff, S. (1994) Modification of the Drosophila heterochromatic mutation brownDominant by linkage alterations, Genetics, 136, 559–571.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Henikoff, S., and Dreesen, T. D. (1989) Trans-inactivation of the Drosophila brown gene: evidence for transcriptional repression and somatic pairing dependence, Proc. Natl. Acad. Sci. USA, 86, 6704–6708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mcguire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., and Davis, R. L. (2003) Spatiotemporal rescue of memory dysfunction in Drosophila, Science, 302, 1765–1768.

    Article  PubMed  CAS  Google Scholar 

  18. Fujimoto, E., Gaynes, B., Brimley, C. J., Chien, C. B., and Bonkowsky, J. L. (2011) Gal80 intersectional regulation of cell-type specific expression in vertebrates, Dev. Dyn., 240, 2324–2334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Osterwalder, T., Yoon, K. S., White, B. H., and Keshishian, H. (2001) A conditional tissue-specific transgene expres-sion system using inducible GAL4, Proc. Natl. Acad. Sci. USA, 98, 12596–12601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Roman, G., Endo, K., Zong, L., and Davis, R. L. (2001) P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 98, 12602–12607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bischof, J., Maeda, R. K., Hediger, M., Karch, F., and Basler, K. (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases, Proc. Natl. Acad. Sci. USA, 104, 3312–3317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Groth, A. C., Fish, M., Nusse, R., and Calos, M. P. (2004) Construction of transgenic Drosophila by using the site-spe-cific integrase from phage phiC31, Genetics, 166, 1775–1782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Venken, K. J., Schulze, K. L., Haelterman, N. A., Pan, H., He, Y., Evans-Holm, M., Carlson, J. W., Levis, R. W., Spradling, A. C., Hoskins, R. A., and Bellen, H. J. (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes, Nat. Methods, 8, 737–743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vogel, M. J., Pagie, L., Talhout, W., Nieuwland, M., Kerkhoven, R. M., and Van Steensel, B. (2009) High-reso-lution mapping of heterochromatin redistribution in a Drosophila position-effect variegation model, Epigenetics Chromatin, 2, 1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sage, B. T., Wu, M. D., and Csink, A. K. (2008) Interplay of developmentally regulated gene expression and hete-rochromatic silencing in trans in Drosophila, Genetics, 178, 749–759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lavrov.

Additional information

Original Russian Text © A. S. Shatskikh, O. M. Olenkina, A. A. Solodovnikov, S. A. Lavrov, 2018, published in Biokhimiya, 2018, Vol. 83, No. 5, pp. 712–723.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-534, April 9, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatskikh, A.S., Olenkina, O.M., Solodovnikov, A.A. et al. Regulated Gene Expression as a Tool for Analysis of Heterochromatin Position Effect in Drosophila. Biochemistry Moscow 83, 542–551 (2018). https://doi.org/10.1134/S0006297918050073

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918050073

Keywords

Navigation