Biochemistry (Moscow)

, Volume 83, Issue 4, pp 402–410 | Cite as

Effect of Environmental Factors on Nuclear Organization and Transformation of Human B Lymphocytes

  • F. B. Sall
  • D. Germini
  • A. P. Kovina
  • V. Ribrag
  • J. Wiels
  • A. O. Toure
  • O. V. Iarovaia
  • M. Lipinski
  • Y. Vassetzky


Chromosomal translocations have long been known for their association with malignant transformation, particularly in hematopoietic disorders such as B-cell lymphomas. In addition to the physiological process of maturation, which creates double strand breaks in immunoglobulin gene loci, environmental factors including the Epstein–Barr and human immunodeficiency viruses, malaria-causing parasites (Plasmodium falciparum), and plant components (Euphorbia tirucalli latex) can trigger a reorganization of the nuclear architecture and DNA damage that together will facilitate the occurrence of deleterious chromosomal rearrangements.


Burkitt lymphoma EBV HIV Plasmodium falciparum Euphorbia tirucalli oncogenesis nuclear organization 



activation-induced cytosine deaminase


Burkitt lymphoma


class switch recombination


DNA double strand breaks


Epstein–Barr virus


human immunodeficiency virus


non-homologous end joining


recombination activating gene 1(2)


reactive oxygen species


somatic hypermutation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cremer, M., Von Hase, J., Volm, T., Brero, A., Kreth, G., Walter, J., Ficher, C., Solovei, I., Cremer, C., and Cremer, T. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells, Chromosome Res., 9, 541–567.PubMedCrossRefGoogle Scholar
  2. 2.
    Parada, L. A., McQueen, P. G., and Misteli, T. (2004) Tissue-specific spatial organization of genomes, Genome Biol., 5, 44.CrossRefGoogle Scholar
  3. 3.
    Lin, C., Yang, L., and Rosenfeld, M. G. (2012) Molecular logic underlying chromosomal translocations, random or non-random? Adv. Cancer Res., 113, 241–279.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen, B., Yusuf, M., Hashimoto, T., Estandarte, A. K., Thompson, G., and Robinson, I. (2017) Three-dimensional positioning and structure of chromosomes in a human prophase nucleus, Sci. Adv., 3, e1602231.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Croft, J. A., Bridger, J. M., Boyle, S., Perry, P., Teague, P., and Bickmore, W. A. (1999) Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol., 145, 1119–1131.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cavalli, G., and Misteli, T. (2013) Functional implications of genome topology, Nat. Struct. Mol. Biol., 20, 290–299.PubMedCrossRefGoogle Scholar
  7. 7.
    Meaburn, K. J., Misteli, T., and Soutoglou, E. (2007) Spatial genome organization in the formation of chromosomal translocations, Semin. Cancer Biol., 17, 80–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Fanucchi, S., Shibayama, Y., Burd, S., Weinberg, M. S., and Mhlanga, M. M. (2013) Chromosomal contact permits transcription between coregulated genes, Cell, 155, 606–620.PubMedCrossRefGoogle Scholar
  9. 9.
    Therizols, P., Illingworth, R. S., Courilleau, C., Boyle, S., Wood, A. J., and Bickmore, W. A. (2014) Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells, Science, 346, 1238–1242.PubMedCrossRefGoogle Scholar
  10. 10.
    Gonzalez-Sandoval, A., Towbin, B. D., Kalck, V., Cabianca, D. S., Gaidatzis, D., Hauer, M. H., Geng, L., Wang, L., Yang, T., Wang, X., Zhao, K., and Gasser, S. M. (2015) Perinuclear anchoring of H3K9-methylated chromatin stabilizes induced cell fate in C. elegans embryos, Cell, 163, 1333–1347.PubMedCrossRefGoogle Scholar
  11. 11.
    Bonev, B., and Cavalli, G. (2016) Organization and function of the 3D genome, Nat. Rev. Genet., 17, 661–678.PubMedCrossRefGoogle Scholar
  12. 12.
    Jakob, B., Splinter, J., Durante, M., and Taucher-Scholz, G. (2009) Live cell microscopy analysis of radiation-induced DNA double-strand break motion, Proc. Natl. Acad. Sci. USA, 106, 3172–3177.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Krawczyk, P. M., Borovski, T., Stap, J., Cijsouw, T., ten Cate, R., Medema, J. P., Kanaar, R., Franken, N. A., and Aten, J. A. (2012) Chromatin mobility is increased at sites of DNA double-strand breaks, J. Cell Sci., 125, 2127–2133.PubMedCrossRefGoogle Scholar
  14. 14.
    Dion, V., Kalck, V., Horigome, C., Towbin, B. D., and Gasser, S. M. (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombi-nation machinery, Nat. Cell Biol., 14, 502–509.PubMedCrossRefGoogle Scholar
  15. 15.
    Roukos, V., Voss, T. C., Schmidt, C. K., Lee, S., Wangsa, D., and Misteli, T. (2013) Spatial dynamics of chromosome translocations in living cells, Science, 341, 660–664.PubMedCrossRefGoogle Scholar
  16. 16.
    Kruhlak, M. J., Celeste, A., Dellaire, G., Fernandez-Capetillo, O., Müller, W. G., McNally, J. G., Bazett-Jones, D. P., and Nussenzweig, A. (2006) Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks, J. Cell Biol., 172, 823–834.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Aten, J. A., Stap, J., Krawczyk, P. M., van Oven, C. H., Hoebe, R. A., Essers, J., and Kanaar, R. (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains, Science, 303, 92–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Germini, D., Tsfasman, T., Klibi, M., El-Amine, R., Pichugin, A., Iarovaia, O. V., Bilhou-Nabera, C., Subra, F., Bou Saada, Y., Sukhanova, A., Boutboul, D., Raphael, M., Wiels, J., Razin, S. V., Bury-Mone, S., Oksenhendler, E., Lipinski, M., and Vassetzky, Y. S. (2017) HIV Tat induces a prolonged MYC relocalization next to IGH in circulating B-cells, Leukemia, 31, 2515–2522.PubMedCrossRefGoogle Scholar
  19. 19.
    Roukos, V., and Misteli, T. (2014) The biogenesis of chromosome translocations, Nat. Cell Biol., 16, 293–300.PubMedCrossRefGoogle Scholar
  20. 20.
    Roukos, V., Burman, B., and Misteli, T. (2013) The cellular etiology of chromosome translocations, Curr. Opin. Cell Biol., 25, 357–364.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Burman, B., Zhang, Z. Z., Pegoraro, G., Lieb, J. D., and Misteli, T. (2015) Histone modifications predispose genome regions to breakage and translocation, Genes Dev., 29, 1393–1402.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Daniel, J. A., and Nussenzweig, A. (2012) Roles for histone H3K4 methyltransferase activities during immunoglobulin class-switch recombination, Biochim. Biophys. Acta, 1819, 733–738.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Shimazaki, N., Tsai, A. G., and Lieber, M. R. (2009) H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations, Mol. Cell, 34, 535–544.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chiarle, R., Zhang, Y., Frock, R. L., Lewis, S. M., Molinie, B., Ho, Y. J., Myers, D. R., Choi, V. W., Compagno, M., Malkin, D. J., Neuberg, D., Monti, S., Giallourakis, C. C., Gostissa, M., and Alt, F. W. (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B-cells, Cell, 147, 107–119.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mathas, S., Kreher, S., Meaburn, K. J., Johrens, K., Lamprecht, B., Assaf, C., Sterry, W., Kadin, M. E., Daibata, M., Joos, S., Hummel, M., Stein, H., Janz, M., Anagnostopoulos, I., Schrock, E., and Misteli, T. (2009) Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma, Proc. Natl. Acad. Sci. USA, 106, 5831–5836.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Klein, I. A., Resch, W., Jankovic, M., Oliveira, T., Yamane, A., Nakahashi, H., Di Virgilio, M., Bothmer, A., Nussenzweig, A., Robbiani, D. F., Casellas, R., and Nussenzweig, M. C. (2011) Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B-lymphocytes, Cell, 147, 95–106.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mathas, S., and Misteli, T. (2009) The dangers of transcription, Cell, 139, 1047–1049.PubMedCrossRefGoogle Scholar
  28. 28.
    Lin, C., Yang, L., Tanasa, B., Hutt, K., Ju, B., Ohgi, K., Zhang, J., Rose, D. W., Fu, X. D., Glass, C. K., and Rosenfeld, M. G. (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer, Cell, 139, 1069–1083.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Deaton, A., and Bird, A. (2011) CpG islands and the regulation of transcription, Genes Dev., 25, 1010–1022.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tsai, A. G., Lu, H., Raghavan, S. C., Muschen, M., Hsieh, C. L., and Lieber, M. R. (2008) Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity, Cell, 135, 1130–1142.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Nambiar, M., and Raghavan, S. C. (2011) How does DNA break during chromosomal translocations? Nucleic Acids Res., 39, 5813–5825.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Clapier, C. R., Iwasa, J., Cairns, B. R., and Peterson, C. L. (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes, Nat. Rev. Mol. Cell Biol., 18, 407–422.PubMedCrossRefGoogle Scholar
  33. 33.
    Neumann, F. R., Dion, V., Gehlen, L. R., Tsai-Pflugfelder, M., Schmid, R., Taddei, A., and Gasser, S. M. (2012) Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination, Genes Dev., 26, 369–383.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bornkamm, G. W. (2009) Epstein–Barr virus and the pathogenesis of Burkitt’s lymphoma: more questions than answers, Int. J. Cancer, 124, 1745–1755.PubMedCrossRefGoogle Scholar
  35. 35.
    Mawson, A. R., and Majumdar, S. (2017) Malaria, Epstein–Barr virus infection, and the pathogenesis of Burkitt’s lymphoma, Int. J. Cancer, 141, 1849–1855.PubMedGoogle Scholar
  36. 36.
    Moormann, A. M., and Bailey, J. A. (2016) Malaria–how this parasitic infection aids and abets EBV-associated Burkitt lymphomagenesis, Curr. Opin. Virol., 20, 78–84.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Brady, G., MacArthur, G. J., and Farrell, P. J. (2007) Epstein–Barr virus and Burkitt lymphoma, J. Clin. Pathol., 60, 1397–1402.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Allday, M. J. (2009) How does Epstein–Barr virus (EBV) complement the activation of myc in the pathogenesis of Burkitt’s lymphoma? Semin. Cancer Biol., 19, 366–376.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Torgbor, C., Awuah, P., Deitsch, K., Kalantari, P., Duca, K. A., and Thorley-Lawson, D. A. (2014) A multifactorial role for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis, PLoS Pathog., 10, e1004170.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bernard, O., Cory, S., Gerondakis, S., Webb, E., and Adams, J. M. (1983) Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours, EMBO J., 2, 2375–2383.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Sklyar, I., Iarovaia, O. V., Gavrilov, A. A., Pichugin, A., Germini, D., Tsfasman, T., Caron, G., Fest, T., Lipinski, M., Razin, S. V., and Vassetzky, Y. S. (2016) Distinct patterns of colocalization of the CCND1 and CMYC genes with their potential translocation partner IGH at successive stages of B-cell differentiation, J. Cell. Biochem., 117, 1506–1510.PubMedCrossRefGoogle Scholar
  42. 42.
    Allinne, J., Pichugin, A., Iarovaia, O., Klibi, M., Barat, A., Zlotek-Zlotkiewicz, E., Saada, Y., Dib, C., Dmitriev, P., Hamade, A., and Carnac, G. (2014) Perinucleolar relocalization and nucleolin as crucial events in the transcriptional activation of key genes in mantle cell lymphoma, Blood, 123, 2044–2053.PubMedCrossRefGoogle Scholar
  43. 43.
    Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A., and Misteli, T. (2003) Spatial proximity of translocation-prone gene loci in human lymphomas, Nat. Genet., 34, 287–291.PubMedCrossRefGoogle Scholar
  44. 44.
    Nikiforova, M. N., Stringer, J. R., Blough, R., Medvedovic, M., Fagin, J. A., and Nikiforov, Y. E. (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cell, Science, 290, 138–141.PubMedCrossRefGoogle Scholar
  45. 45.
    Osborne, C. S., Chakalova, L., Mitchell, J. A., Horton, A., Wood, A. L., Bolland, D. J., Corcoran, A. E., and Fraser, P. (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by IGH, PLoS Biol., 5, e192.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Pichugin, A., Iarovaia, O. V., Gavrilov, A., Sklyar, I., Barinova, N., Barinov, A., Ivashkin, E., Caron, G., Aoufouchi, S., Razin, S. V., Fest, T., Lipinski, M., and Vassetzky, Y. S. (2017) The IGH locus relocalizes to a “recombination compartment” in the perinucleolar region of differentiating B-lymphocytes, Oncotarget, 8, 16941.CrossRefGoogle Scholar
  47. 47.
    Ramiro, A. R., Jankovic, M., Eisenreich, T., Difilippantonio, S., Chen-Kiang, S., Muramatsu, M., Honjo, T., Nussenzweig, A., and Nussenzweig, M. C. (2004) AID is required for c-myc/IGH chromosome translocations in vivo, Cell, 118, 431–438.PubMedCrossRefGoogle Scholar
  48. 48.
    Robbiani, D. F., Bothmer, A., Callen, E., Reina-San-Martin, B., Dorsett, Y., Difilippantonio, S., Bolland, D. J., Chen, H. T., Corcoran, A. E., Nussenzweig, A., and Nussenzweig, M. C. (2008) AID is required for the chromosomal breaks in c-myc that lead to c-myc/IGH translocations, Cell, 135, 1028–1038.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Robbiani, D. F., Deroubaix, S., Feldhahn, N., Oliveira, T. Y., Callen, E., Wang, Q., Jankovic, M., Silva, I. T., Rommel, P. C., Bosque, D., and Eisenreich, T. (2015) Plasmodium infectio promotes genomic instability and AID-dependent B-cell lymphoma, Cell, 162, 727–737.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Rocha, P. P., Micsinai, M., Kim, J. R., Hewitt, S. L., Souza, P. P., Trimarchi, T., Strino, F., Parisi, F., Kluger, Y., and Skok, J. A. (2012) Close proximity to IGH is a contributing factor to AID-mediated translocations, Mol. Cell, 47, 873–885.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Epstein, M. A. (1965) Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt’s lymphoma, J. Exp. Med., 121, 761–770.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Amon, W., and Farrell, P. J. (2005) Reactivation of Epstein–Barr virus from latency, Rev. Med. Virol., 15, 149–156.PubMedCrossRefGoogle Scholar
  53. 53.
    Li, C., Shi, Z., Zhang, L., Huang, Y., Liu, A., Jin, Y., Lukasova, E., Kozubek, S., Kozubek, M., Kjeronska, J., Ryznar, L., Horakova, J., and Krahulcova, E. (2010) Dynamic changes of territories 17 and 18 during EBV-infection of human lymphocytes, Mol. Biol. Rep., 37, 2347–2354.PubMedCrossRefGoogle Scholar
  54. 54.
    Kamranvar, S. A., Gruhne, B., Szeles, A., and Masucci, M. G. (2007) Epstein–Barr virus promotes genomic instability in Burkitt’s lymphoma, Oncogene, 26, 5115–5123.PubMedCrossRefGoogle Scholar
  55. 55.
    Gruhne, B., Sompallae, R., Marescotti, D., Kamranvar, S., Gastaldello, S., and Masucci, M. (2009) The Epstein–Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species, Proc. Natl. Acad. Sci. USA, 106, 2313–2318.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Young, L. S., and Rickinson, A. B. (2004) Epstein–Barr virus: 40 years on, Nat. Rev. Cancer, 4, 757–768.PubMedCrossRefGoogle Scholar
  57. 57.
    Sivachandran, N., Wang, X., and Frappier, L. (2012) Functions of the Epstein–Barr virus EBNA1 protein in viral reactivation and lytic infection, J. Virol., 86, 6146–6158.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sompallae, R., Callegari, S., Kamranvar, S. A., and Masucci, M. G. (2010) Transcription profiling of Epstein–Barr virus nuclear antigen (EBNA)-1 expressing cells suggests targeting of chromatin remodeling complexes, PLoS One, 5.Google Scholar
  59. 59.
    Coppotelli, G., Mughal, N., Callegari, S., Sompallae, R., Caja, L., Luijsterburg, M. S., Dantuma, N. P., Moustakas, A., and Masucci, M. G. (2013) The Epstein–Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins, Nucleic Acids Res., 41, 2950–2962.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wu, D. Y., Kalpana, G. V., Goff, S. P., and Schubach, W. H. (1996) Epstein–Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF–SWI complex, J. Virol., 70, 6020–6028.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Wood, C. D., Veenstra, H., Khasnis, S., Gunnell, A., Webb, H. M., Shannon-Lowe, C., Andrews, S., Osborne, C. S., and West, M. J. (2016) Myc activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer–promoter hubs, Elife, 5, e18270.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Chen, A., Zhao, B., Kieff, E., Aster, J. C., and Wang, F. (2006) EBNA-3B-and EBNA-3C-regulated cellular genes in Epstein–Barr virus-immortalized lymphoblastoid cell lines, J. Virol., 80, 10139–10150.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kalchschmidt, J. S., Bashford-Rogers, R., Paschos, K., Gillman, A. C. T., Styles, C. T., Kellam, P., and Alldae, M. J. (2016) Epstein–Barr virus nuclear protein EBNA3C directly induces expression of AID and somatic mutations in B-cells, J. Exp. Med., 213, 921–928.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Leonard, S., Wei, W., Anderton, J., Vockerodt, M., Rowe, M., Murray, P. G., and Woodman, C. B. (2011) Epigenetic and transcriptional changes which follow Epstein–Barr virus infection of germinal center B-cells and their relevance to the pathogenesis of Hodgkin’s lymphoma, J. Virol., 85, 9568–9577.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Chang, Y. N., Dong, D. L., Hayward, G. S., and Hayward, S. D. (1990) The Epstein–Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif, J. Virol., 64, 3358–3369.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kgatle, M. M., Spearman, C. W., Kalla, A. A., and Hairwadzi, H. N. (2017) DNA oncogenic virus-induced oxidative stress, genomic damage, and aberrant epigenetic alterations, Oxid. Med. Cell. Longev., 3179421.Google Scholar
  67. 67.
    Chen, X., Kamranvar, S. A., and Masucci, M. G. (2016) Oxidative stress enables Epstein–Barr virus-induced B-cell transformation by posttranscriptional regulation of viral and cellular growth-promoting factors, Oncogene, 35, 3807–3816.PubMedCrossRefGoogle Scholar
  68. 68.
    Chiu, Y. F., Sugden, A. U., and Sugden, B. (2013) Epstein–Barr viral productive amplification reprograms nuclear architecture, DNA replication, and histone deposition, Cell Host Microbe, 14, 607–618.PubMedCrossRefGoogle Scholar
  69. 69.
    Asai, R., Kato, A., Kato, K., Kanamori-Koyama, M., Sugimoto, K., Sairenji, T., Nishiyama, Y., and Kawaguchi, Y. (2006) Epstein–Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1, J. Virol., 80, 5125–5134.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lee, C.-P., Chen, J.-Y., Wang, J.-T., Kimura, K., Takemoto, A., Lu, C.-C., and Chen, M. R. (2007) Epstein–Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II, J. Virol., 81, 5166–5180.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Achkar, E., Gerbault-Seureau, M., Muleris, M., Dutrillaux, B., and Debatisse, M. (2005) Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites, Proc. Natl. Acad. Sci. USA, 102, 18069–18074.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Moquin, S. A., Thomas, S., Whalen, S., Warburton, A., Fernanadez, S. G., McBride, A. A., Katherine, S., Pollard, J. J., and Miranda, L. (2017) The Epstein–Barr virus episome maneuvers between nuclear chromatin compartments during reactivation, J. Virol., doi: 10.1128/JVI.01413-17.Google Scholar
  73. 73.
    Hurley, E., Agger, S., McNeil, J., Lawrence, J. B., Calendar, A., Lenoir, G., and Thorley-Lawson, D. A. (1991) When Epstein–Barr virus persistently infects B-cell lines, it frequently integrates, J. Virol., 65, 1245–1254.PubMedGoogle Scholar
  74. 74.
    Xiao, K., Yu, Z., Li, X., Li, X., Tang, K., Tu, C., Qi, P., Liao, Q., Chen, P., Zeng, Z., Li, G., and Xiong, W. (2016) Genome-wide analysis of Epstein–Barr virus (EBV) integration and strain in C666-1 and Raji cells, J. Cancer, 7, 214–224.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nunnari, G., Smith, J. A., and Daniel, R. (2008) HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier? J. Exp. Clin. Cancer Res., 27, 3.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Musinova, Y. R., Sheval, E. V., Dib, C., Germini, D., and Vassetzky, Y. S. (2016) Functional roles of HIV-1 Tat protein in the nucleus, Cell. Mol. Life Sci., 73, 589–601.PubMedCrossRefGoogle Scholar
  77. 77.
    Gibson, T. M., Morton, L. M., Shiels, M. S., Clarke, C. A., and Engels, E. A. (2014) Risk of non-Hodgkin lymphoma subtypes in HIV-infected people during the HAART era: a population-based study, AIDS, 28, 2313–2318.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mutalima, N., Molyneux, E., Jaffe, H., Kamiza, S., Borgstein, E., Mkandawire, N., Liomba, G., Batumba, M., Lagos, D., Gratrix, F., Boshoff, C., Casabonne, D., Carpenter, L. M., and Newton, R. (2008) Associations between Burkitt lymphoma among children in Malawi and infection with HIV, EBV and malaria: results from a case-control study, PLoS One, 3, e2505.PubMedGoogle Scholar
  79. 79.
    Dolcetti, R., Gloghini, A., Caruso, A., and Carbone, A. (2016) A lymphomagenic role for HIV beyond immune suppression? Blood, 127, 1403–1409.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Robbiani, D. F., Bunting, S., Feldhahn, N., Bothmer, A., Camps, J., Deroubaix, S., Klein, I. A., Stone, G., Eisenreich, T. R., Ried, T., Nussenzweig, A., and Nussenzweig, M. C. (2009) AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations, Mol. Cell, 36, 631–641.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Sneller, M., and Lane, H. (2014) HIV/IL-2 and EBV-associated lymphoproliferative diseases: cause and effect or coincidence? HIV Med., 15, 1–2.PubMedCrossRefGoogle Scholar
  82. 82.
    Mbulaiteye, S. M., Biggar, R. J., Goedert, J. J., and Engels, E. A. (2003) Immune deficiency and risk for malignancy among persons with AIDS, J. Acquir. Immune Defic. Syndr., 32, 527–533.PubMedCrossRefGoogle Scholar
  83. 83.
    Engels, E. A., Pfeiffer, R. M., Landgren, O., and Moore, R. D. (2010) Immunologic and virologic predictors of AIDS-related non-Hodgkin lymphoma in the highly active antiretro-viral therapy era, J. Acquir. Immune Defic. Syndr., 54, 78–84.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    El-Amine, R., Germini, D., Zakharova, V. V., Tsfasman, T., Sheval, E. V., Louzada, R. A. N., Dupuy, C., Bilhou-Nabera, C., Hamade, A., Najjar, F., Oksenhendler, E., Lipinski, M., Chernyak, B. V., and Vassetzky, Y. S. (2017) HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production, Redox Biol., in press.Google Scholar
  85. 85.
    Rochford, R., and Moormann, A. M. (2015) Burkitt’s lymphoma, Curr. Top. Microbiol. Immunol., 390, 267–285.PubMedGoogle Scholar
  86. 86.
    Singh, B., Sung, L. K., Matusop, A., Radhakrishnan, A., Shamsul, S. G., Cox-Singh, J., Thomas, A., and Conway, D. J. (2004) A large focus of naturally acquired Plasmodium knowlesi infections in human beings, Lancet, 363, 1017–1024.PubMedCrossRefGoogle Scholar
  87. 87.
    Petter, M., and Duffy, M. F. (2015) Pathogen–Host Interactions: Antigenic Variation v. Somatic Adaptations, (Hsu, E., and Du Pasquier, L., eds.) Springer.Google Scholar
  88. 88.
    Biggs, B., Anders, R. F., Dillon, H. E., Davern, K. M., Martin, M., Petersen, C., Carlson, J., Helmby, H., Hill, A. V. S., Brewster, D., Greenwood, B. M., and Wahlgren, M. (1992) Adherence of infected erythrocytes to venular endothelium selects for antigenic variants of Plasmodium falciparum, J. Immunol., 149, 2047–2054.PubMedGoogle Scholar
  89. 89.
    Chyne, A., Donati, D., Guerreiro-Cacais, A. O., Levitsky, V., Chen, Q., Falk, K., Iorem, J., Kironde, F., Wahlgren, M., and Bejarano, M. T. (2007) A molecular link between malaria and Epstein–Barr virus reactivation, PLoS Pathog., 3, e80.CrossRefGoogle Scholar
  90. 90.
    Reynaldi, A., Schlub, T. E., Chelimo, K., Sumba, P. O., Piriou, E., Ogolla, S., Moormann, A. M., Rochford, R., and Davenport, M. P. (2016) Impact of plasmodium falciparum coinfection on longitudinal Epstein–Barr virus kinetics in kenyan children, J. Infect. Dis., 213, 985–991.PubMedCrossRefGoogle Scholar
  91. 91.
    Moormann, A. M., Chelimo, K., Sumba, O. P., Lutzke, M. L., Ploutz-Snyder, R., Newton, D., Kazura, J., and Rochford, R. (2005) Exposure to holoendemic malaria results in elevated Epstein–Barr virus loads in children, J. Infect. Dis., 191, 1233–1238.PubMedCrossRefGoogle Scholar
  92. 92.
    Moormann, A. M., Chelimo, K., Sumba, P. O., Tisch, D. J., Rochford, R., and Kazura, J. W. (2007) Exposure to holoendemic malaria results in suppression of Epstein–Barr virus-specific T cell immunosurveillance in Kenyan children, J. Infect. Dis., 195, 799–808.PubMedCrossRefGoogle Scholar
  93. 93.
    Njie, R., Bell, A. I., Jia, H., Croom-Carter, D., Chaganti, S., Hislop, A. D., Whittle H., and Rickinson, A. B. (2009) The effects of acute malaria on Epstein–Barr virus (EBV) load and EBV-specific T-cell immunity in Gambian children, J. Infect. Dis., 199, 31–38.PubMedCrossRefGoogle Scholar
  94. 94.
    Chattopadhyay, P. K., Chelimo, K., Embury, P. B., Mulama, D. H., Sumba, P. O., Gostick, E., Ladell, K., Brodie, T. M., Vulule, J., Roederer, M., Moormann, A. M., and Prece, D. A. (2013) Holoendemic malaria exposure is associated with altered Epstein–Barr virus-specific CD8+ T-cell differentiation, J. Virol., 87, 1779–1788.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Gupta, N., Vishnoi, G., Wal, A., and Wal, P. (2013) Medicinal value of Euphorbia tirucalli, Syst. Rev. Pharm., 4, 40.CrossRefGoogle Scholar
  96. 96.
    Mannucci, S., Luzzi, A., Carugi, A., Gozzetti, A., Lazzi, S., Malagnino, V., Monique, S., Cusi, M. G., Leoncini, L., Van den Bosch, C. A., and De Falco, G. (2012) EBV reactivation and chromosomal polysomies: Euphorbia tirucalli as a possible cofactor in endemic Burkitt lymphoma, Adv. Hematol., 149780.Google Scholar
  97. 97.
    Van den Bosch, C., Griffin, B. E., Kazembe, P., Dziweni, C., and Kadzamira, L. (1993) Are plant factors a missing link in the evolution of endemic Burkitt’s lymphoma? Br. J. Cancer, 68, 1232–1235.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Machado, M. M., De Oliveira, L. F. S., Zuravski, L., De Souza, R. O., Fischer, P., Duarte, J. A., Jonathaline, A., Manoelly, O. R., Camila, M. G., Boligon, A. A., and Margareth, A. L. (2016) Evaluation of genotoxic and cytotoxic effects of hydroalcoholic extract of Euphorbia tirucalli (Euphorbiaceae) in cell cultures of human leukocytes, An. Acad. Bras. Cienc., 88, 17–28.PubMedCrossRefGoogle Scholar
  99. 99.
    Waczuk, E., Kamdem, J., Ablaji, A., Meinerz, D., Bueno, D., Do Nascimento Gonzaga, T., Scotti do Canto Dorow, S., Boligon, A. A., Athayde, M. L., and Avila, D. S. (2015) Euphorbia tirucalli aqueous extract induces cytotoxicity, genotoxicity and changes in antioxidant gene expression in human leukocytes, Toxicol. Res. (Camb.), 4, 739–748.Google Scholar
  100. 100.
    MacNeil, A., Sumba, O. P., Lutzke, M. L., Moormann, A., and Rochford, R. (2003) Activation of the Epstein–Barr virus lytic cycle by the latex of the plant Euphorbia tirucalli, Br. J. Cancer, 88, 1566–1569.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Aya, T., Kinoshita, T., Imai, S., Koizumi, S., Mizuno, F., Osato, T., Saton, C., Oikawa, T., Kuzumaki, N., and Ohigashi, H. (1991) Chromosome translocation and c-MYC activation by Epstein–Barr virus and Euphorbia tirucalli in B lymphocytes, Lancet, 337, 1190.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • F. B. Sall
    • 1
    • 2
    • 3
  • D. Germini
    • 1
    • 2
  • A. P. Kovina
    • 1
    • 2
    • 4
  • V. Ribrag
    • 5
    • 6
  • J. Wiels
    • 1
    • 2
  • A. O. Toure
    • 3
  • O. V. Iarovaia
    • 2
    • 4
  • M. Lipinski
    • 1
    • 2
  • Y. Vassetzky
    • 1
    • 2
    • 7
  1. 1.UMR8126, Université Paris-Sud, CNRSInstitut de Cancérologie Gustave RoussyVillejuifFrance
  2. 2.LIA1066 “Laboratoire Franco–Russe de Recherche en Oncologie”VillejuifFrance
  3. 3.Laboratoire d’Hématologie Centre Hospitalier Universitaire Aristide Le DantecUniversité Cheikh Anta DiopDakarSénégal
  4. 4.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  5. 5.Institut Gustave RoussyVillejuifFrance
  6. 6.Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1009, Université Paris SudInstitut Gustave RoussyVillejuifFrance
  7. 7.Koltzov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations