Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 4, pp 393–401 | Cite as

Interpreting Chromosomal Rearrangements in the Context of 3-Dimentional Genome Organization: A Practical Guide for Medical Genetics

  • V. S. Fishman
  • P. A. Salnikov
  • N. R. Battulin
Review

Abstract

In this exciting era of “next-gen cytogenetics”, the use of novel molecular methods such as comparative genome hybridization and whole genome and whole exome sequencing becomes more and more common in clinics. This results in generation of large amounts of high-resolution patient-specific data and challenges the development of new approaches for interpretation of obtained information. Usually, interpretation of chromosomal rearrangements is focused on alterations of linear genome sequence, underestimating the role of spatial chromatin organization. In this article, we describe the main features of 3-dimentional genome organization, emphasizing their role in normal and pathological development. We highlight some tips to help physicians estimating the impact of chromosomal rearrangements on the patient phenotype. A separate section describes available tools that can be used to visualize and analyze human genome architecture.

Keywords

chromosomal rearrangements 3-dimensional nuclear architecture TAD 3C Hi-C human congenital disorders 

Abbreviations

3C

chromosome conformation capture (technology)

ChIP

chromatin immunoprecipitation

DSBs

double-strand DNA breaks

Hi-C method

high-throughput extension of 3C technology

IGH

immunoglobulin heavy chain

TADs

topologically associating domains

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richmond, T. J., and Davey, C. A. (2003) The structure of DNA in the nucleosome core, Nature, 423, 145–150.CrossRefPubMedGoogle Scholar
  2. 2.
    Mirny, L. A. (2011) The fractal globule as a model of chromatin architecture in the cell, Chromosome Res., 19, 37–51.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Merkenschlager, M., and Nora, E. P. (2016) CTCF and cohesin in genome folding and transcriptional gene regulation, Annu. Rev. Genom. Human Genet., 17, 17–43.CrossRefGoogle Scholar
  4. 4.
    Bannister, A. J., and Kouzarides, T. (2011) Regulation of chromatin by histone modifications, Cell Res., 21, 381–395.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dixon, J. R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J. E., Lee, A. Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., Diao, Y., Liang, J., Zhao, H., Lobanenkov, V. V., Ecker, J. R., Thomson, J. A., and Ren, B. (2015) Chromatin architecture reorganization during stem cell differentiation, Nature, 518, 331–336.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376–380.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., and Aiden, E. L. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, 159, 1665–1680.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cremer, C., and Cremer, T. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet., 2, 292–301.PubMedGoogle Scholar
  9. 9.
    Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002) Capturing chromosome conformation, Science, 295, 1306–1311.CrossRefPubMedGoogle Scholar
  10. 10.
    De Wit, E., and De Laat, W. (2012) A decade of 3C technologies-insights into nuclear organization, Genes Dev., 26, 11–24.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289–293.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Imakaev, M., Fudenberg, G., McCord, R. P., Naumova, N., Goloborodko, A., Lajoie, B. R., Dekker, J., and Mirny, L. A. (2012) Iterative correction of Hi-C data reveals hall-marks of chromosome organization, Nat. Methods, 9, 999–1003.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Talbert, P. B., and Henikoff, S. (2006) Spreading of silent chromatin: inaction at a distance, Nat. Rev. Genet., 7, 793–803.CrossRefPubMedGoogle Scholar
  14. 14.
    Lupianez, D. G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J. M., Laxova, R., Santos-Simarro, F., Gilbert-Dussardier, B., Wittler, L., Borschiwer, M., Haas, S. A., Osterwalder, M., Franke, M., Timmermann, B., Hecht, J., Spielmann, M., Visel, A., and Mundlos, S. (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions, Cell, 161, 1–14.CrossRefGoogle Scholar
  15. 15.
    Franke, M., Ibrahim, D. M., Andrey, G., Schwarzer, W., Heinrich, V., Schopflin, R., Kraft, K., Kempfer, R., Jerkovic, I., Chan, W.-L., Spielmann, M., Timmermann, B., Wittler, L., Kurth, I., Cambiaso, P., Zuffardi, O., Houge, G., Lambie, L., Brancati, F., Pombo, A., Vingron, M., Spitz, F., and Mundlos, S. (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications, Nature, 538, 265–269.CrossRefPubMedGoogle Scholar
  16. 16.
    Dekker, J., and Heard, E. (2015) Structural and functional diversity of topologically associating domains, FEBS Lett., 589, 2877–2884.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Valton, A. L., and Dekker, J. (2016) TAD disruption as oncogenic driver, Curr. Opin. Genet. Dev., 36, 34–40.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Holwerda, S., and De Laat, W. (2012) Chromatin loops, gene positioning, and gene expression, Front. Genet., 3.Google Scholar
  19. 19.
    Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., Michalski, P., Piecuch, E., Wang, P., Wang, D., Tian, S. Z., Penrad-Mobayed, M., Sachs, L. M., Ruan, X., Wei, C. L., Liu, E. T., Wilczynski, G. M., Plewczynski, D., Li, G., and Ruan, Y. (2015) CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription, Cell, 163, 1611–1627.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Flyamer, I. M., Gassler, J., Imakaev, M., Brandao, H. B., Ulianov, S. V., Abdennur, N., Razin, S. V., Mirny, L. A., and Tachibana-Konwalski, K. (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition, Nature, 544, 110–114.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ulianov, S. V., Khrameeva, E. E., Gavrilov, A. A., Flyamer, I. M., Kos, P., Mikhaleva, E. A., Penin, A. A., Logacheva, M. D., Imakaev, M. V., Chertovich, A., Gelfand, M. S., Shevelyov, Y. Y., and Razin, S. V. (2016) Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains, Genome Res., 26, 70–84.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Weinreb, C., and Raphael, B. J. (2016) Identification of hierarchical chromatin domains, Bioinformatics, 32, 1601–1609.CrossRefPubMedGoogle Scholar
  23. 23.
    Denker, A., and de Laat, W. (2016) The second decade of 3C technologies: detailed insights into nuclear organization, Genes Dev., 30, 1357–1382.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vicente-Garcia, C., Villarejo-Balcells, B., Irastorza-Azcarate, I., Naranjo, S., Acemel, R. D., Tena, J. J., Rigby, P. W. J., Devos, D. P., Gomez-Skarmeta, J. L., and Carvajal, J. J. (2017) Regulatory landscape fusion in rhabdomyosarcoma through interactions between the PAX3 promoter and FOXO1 regulatory elements, Genome Biol., 18, 106.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ordulu, Z., Kammin, T., Brand, H., Pillalamarri, V., Redin, C. E., Collins, R. L., Blumenthal, I., Hanscom, C., Pereira, S., Crandall, B. F., Gerrol, P., Hayden, M. A., Hussain, N., Kanengisser-Pines, B., Kantarci, S., Levy, B., Macera, M. J., Quintero-Rivera, F., Spiegel, E., Stevens, B., Ulm, J. E., Warburton, D., Wilkins-Haug, L. E., Yachelevich, N., Gusella, J. F., Talkowski, M. E., and Morton, C. C. (2016) Structural chromosomal rearrangements require nucleotide-level resolution: lessons from next-generation sequencing in prenatal diagnosis, Am. J. Hum. Genet., 99, 1–19.CrossRefGoogle Scholar
  26. 26.
    Battulin, N., Fishman, V. S., Mazur, A. M., Pomaznoy, M., Khabarova, A. A., Afonnikov, D. A., Prokhortchouk, E. B., and Serov, O. L. (2015) Comparison of the 3D organization of sperm and fibroblast genomes using the Hi-C approach, Genome Biol., 16, 77.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kerpedjiev, P., Abdennur, N., Lekschas, F., McCallum, C., Dinkla, K., Strobelt, H., Luber, J. M., Ouellette, S. B., Ahzir, A., Kumar, N., Hwang, J., Alver, B. H., Pfister, H., Mirny, L. A., Park, P. J., and Gehlenborg, N. (2017) HiGlass: web-based visual comparison and exploration of genome interaction maps, bioRxiv, 1–7.Google Scholar
  28. 28.
    Durand, N. C., Robinson, J. T., Shamim, M. S., Machol, I., Mesirov, J. P., Lander, E. S., and Aiden, E. L. (2016) Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom, Cell Systems, 3, 99–101.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Phanstiel, D. H., Van Bortle, K., Spacek, D., Hess, G. T., Shamim, M. S., Machol, I., Love, M. I., Aiden, E. L., Bassik, M. C., and Snyder, M. P. (2017) Static and dynamic DNA loops form AP-1-bound activation hubs during macrophage development, Mol. Cell, 67, 1037–1048.CrossRefPubMedGoogle Scholar
  30. 30.
    Mullighan, C. G., Goorha, S., Radtke, I., Miller, C. B., Coustan-Smith, E., Dalton, J. D., Girtman, K., Mathew, S., Ma, J., Pounds, S. B., Su, X., Pui, C.-H., Relling, M. V., Evans, W. E., Shurtleff, S. A., and Downing, J. R. (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia, Nature, 446, 758–764.CrossRefPubMedGoogle Scholar
  31. 31.
    Hnisz, D., Weintraub, A. S., Day, D. S., Valton, A., Bak, R. O., Li, C. H., Goldmann, J., Lajoie, B. R., Fan, Z. P., Sigova, A., Reddy, J., Borges-Rivera, D., Lee, T. I., Jaenisch, R., Porteus, M. H., Dekker, J., and Young, R. (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods, Science, 351, 1454–1458.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li, R., Liu, Y., Li, T., and Li, C. (2016) 3Disease browser: a web server for integrating 3D genome and disease-associated chromosome rearrangement data, Sci. Rep., 6, 34651.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Engreitz, J. M., Agarwala, V., and Mirny, L. A. (2012) Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease, PLoS One, 7, e44196.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang, Y., McCord, R. P., Ho, Y.-J., Lajoie, B. R., Hildebrand, D. G., Simon, A. C., Becker, M. S., Alt, F. W., and Dekker, J. (2012) Chromosomal translocations are guided by the spatial organization of the genome, Cell, 148, 908–921.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lieber, M. R. (2016) Mechanisms of human lymphoid chromosomal translocations, Nat. Rev. Cancer, 16, 387–398.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Aten, J. A., Stap, J., Krawczyk, P. M., Van Oven, C. H., Hoebe, R. A., Essers, J., and Kanaar, R. (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains, Science, 303, 92–95.CrossRefPubMedGoogle Scholar
  37. 37.
    Iarovaia, O. V., Rubtsov, M. A., Ioudinkova, E., Tsfasman, T., Razin, S. V., and Vassetzky, Y. S. (2014) Dynamics of double strand breaks and chromosomal translocations, Mol. Cancer, 13, 249.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Grogg, K. L., Miller, R. F., and Dogan, A. (2006) HIV infection and lymphoma, J. Clin. Pathol., 60, 1365–1372.CrossRefGoogle Scholar
  39. 39.
    Osborne, C. S., Chakalova, L., Mitchell, J. A., Horton, A., Wood, A. L., Bolland, D. J., Corcoran, A. E., and Fraser, P. (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh, PLoS Biol., 5, 1763–1772.CrossRefGoogle Scholar
  40. 40.
    Musinova, Y. R., Sheval, E. V., Dib, C., Germini, D., and Vassetzky, Y. S. (2016) Functional roles of HIV-1 Tat protein in the nucleus, Cell. Mol. Life Sci., 73, 589–601.CrossRefPubMedGoogle Scholar
  41. 41.
    Parada, L. A., McQueen, P. G., and Misteli, T. (2004) Tissue-specific spatial organization of genomes, Genome Biol., 5, R44.Google Scholar
  42. 42.
    Whalen, S., Truty, R. M., and Pollard, K. S. (2016) Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin, Nat. Genet., 48, 488–496.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Di Pierro, M., Cheng, R. R., Lieberman Aiden, E., Wolynes, P. G., and Onuchic, J. N. (2017) De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture, Proc. Natl. Acad Sci. USA, 114, 12126–12131.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Fishman
    • 1
    • 2
  • P. A. Salnikov
    • 1
    • 2
  • N. R. Battulin
    • 1
    • 2
  1. 1.Federal Research Center, Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations