Skip to main content
Log in

The Role of Transposable Elements in Emergence of Metazoa

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Systems initially emerged for protecting genomes against insertions of transposable elements and represented by mechanisms of splicing regulation, RNA–interference, and epigenetic factors have played a key role in the evolution of animals. Many studies have shown inherited transpositions of mobile elements in embryogenesis and preservation of their activities in certain tissues of adult organisms. It was supposed that on the emergence of Metazoa the self–regulation mechanisms of transposons related with the gene networks controlling their activity could be involved in intercellular cell coordination in the cascade of successive divisions with differentiated gene expression for generation of tissues and organs. It was supposed that during evolution species–specific features of transposons in the genomes of eukaryotes could form the basis for creation of dynamically related complexes of systems for epigenetic regulation of gene expression. These complexes could be produced due to the influence of noncoding transposon–derived RNAs on DNA methylation, histone modifications, and processing of alternative splicing variants, whereas the mobile elements themselves could be directly involved in the regulation of gene expression in cis and in trans. Transposons are widely distributed in the genomes of eukaryotes; therefore, their activation can change the expression of specific genes. In turn, this can play an important role in cell differentiation during ontogenesis. It is supposed that transposons can form a species–specific pattern for control of gene expression, and that some variants of this pattern can be favorable for adaptation. The presented data indicate the possible influence of transposons in karyotype formation. It is supposed that transposon localization relative to one another and to protein–coding genes can influence the species–specific epigenetic regulation of ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AS:

alternative splicing

CNS:

central nervous system

ERV:

endogenous retroviruses

ESC:

embryonic stem cells

lincRNA:

long intergenic noncoding RNA

LINE:

long interspersed nuclear element

lncRNAs:

long noncoding RNAs

LTR:

long terminal repeats

ME:

mobile element

MIR:

mammalian wide interspersed repeat

ncRNAs:

noncoding RNAs

piRNAs:

piwi–interacting RNAs

RdRP:

RNA–dependent RNA polymerase

RNAi:

RNA interference

SINE:

short interspersed nuclear element

siRNAs:

small interfering RNAs

UTR:

untranslated region

References

  1. Casas–Mollano, J. A., Rohr, J., Kim, E. J., Balassa, E, van Dijk, K., and Cerutti, H. (2008) Diversification of the core RNA interference machinery in Chlamydomonas reinhardtii and the role of DCL1 in transposon silencing, Genetics, 179, 69–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Moran, Y., Praher, D., Fredman, D., and Technau, U. (2013) The evolution of microRNA pathway protein components in Cnidaria, Mol. Biol. Evol., 30, 2541–2552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liew, Y. J., Aranda, M., Carr, A., Baumgarten, S., Zoccola, D., Tambutte, S., Allemand, D., Micklem, G., and Voolstra, C. R. (2014) Identification of microRNA in the coral Styphora pistillata, PLoS One, 9, e91101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kubiak, M. R., and Makalowska, I. (2017) Protein–coding genes’ retrocopies and their functions, Viruses, 9, pii: E80.

    Article  PubMed  CAS  Google Scholar 

  5. Smalheiser, N. R., and Torvik, V. I. (2005) Mammalian microRNAs derived from genomic repeats, Trends Genet., 21, 322–326.

    Article  CAS  PubMed  Google Scholar 

  6. Piriyapongsa, J., and Jordan, I. K. (2007) Family of human microRNA genes from miniature inverted–repeat transposable elements, PLoS One, 14, e203.

    Article  CAS  Google Scholar 

  7. Piriyapongsa, J., Marino–Ramirez, L., and Jordan, I. K. (2007) Origin and evolution of human microRNAs from transposable elements, Genetics, 176, 1323–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Devor, E. J., Peek, A. S., Lanier, W., and Samollow, P. B. (2009) Marsupial–specific microRNAs evolved from marsupial–specific transposable elements, Gene, 448, 187–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan, Z., Sun, X., Jiang, D., Ding, Y., Lu, Z., Gong, L., Liu, H., and Xie, J. (2010) Origin and evolution of a placental–specific microRNA family in the human genome, BMC Evol. Biol., 10, 346–348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yuan, Z., Sun, X., Liu, H., and Xie, J. (2011) MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes, PLoS One, 6, e17666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Borchert, G. M., Holton, N. W., Williams, J. D., Hernan, W. L., Bishop, I. P., Dembosky, J. A., Elste, J. E., Gregoire, N. S., Kim, J. A., Koehler, W. W., Lengerich, J. C., Medema, A. A., Nguyen, M. A., Ower, G. D., Rarick, M. A., Strong, B. N., Tardi, N. J., Tasker, N. M., Wozniak, D. J., Gatto, C., and Larson, E. D. (2011) Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive–element origins, Mob. Genet. Elements, 1, 8–17.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tempel, S., Pollet, N., and Tahi, F. (2012) NcRNA classifier: a tool for detection and classification of transposable element sequences in RNA hairpins, BMC Bioinformatics, 13, 246–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roberts, J. T., Cooper, E. A., and Favreau, C. J. (2013) Formation from transposable element insertions and noncoding RNA mutations, Mob. Genet. Elements, 1, e27755.

    Article  Google Scholar 

  14. Gim, J., Ha, H., Ahn, K., Kim, D. S., and Kim, H. S. (2014) Genome–wide identification and classification of microRNAs derived from repetitive elements, Genom. Inform., 12, 261–267.

    Article  Google Scholar 

  15. Platt, R. N., Vandewege, M. W., Kern, C., Schmidt, C. J., Hoffmann, F. G., and Ray, D. A. (2014) Large number of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats, Mol. Biol. Evol., 31, 1536–1545.

    Article  CAS  PubMed  Google Scholar 

  16. Lei, H., and Vorechovsky, I. (2005) Identification of splicing silencers and enhancers in sense Alus: a role for pseudoacceptors in splice site repression, Mol. Cell. Biol., 25, 6912–6920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pastor, T., Talotti, G., Lewandowska, M. A., and Pagani, F. (2009) An Alu–derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM, Nucleic Acids Res., 37, 7258–7267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watanabe, T., Cheng, E., Zhong, M., and Lin, H. (2015) Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline, Genome Res., 25, 368–380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hadjiargyrou, M., and Delihas, N. (2013) The intertwining of transposable elements and non–coding RNAs, Int. J. Mol. Sci., 14, 13307–13328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Johnson, R., and Guigo, R. J. (2014) The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 20, 959–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerdes, P., Richardson, S. R., Mager, D. L., and Faulkner, G. J. (2016) Transposable elements in the mammalian embryo: pioneers surviving through stealth and service, Genome Biol., 17, 100–116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. De Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A., and Pollock, D. D. (2011) Repetitive elements may comprise over two–thirds of the human genome, PLoS Genet., 7, e1002384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mersch, B., Sela, N., Ast, G., Suhai, S., and Hotz-Wagenblatt, A. (2007) SERpredict: detection of tissueor tumor–specific isoforms generated through exonization of transposable elements, BMC Genet., 8, 78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Novikova, O., and Belfort, M. (2017) Mobile group II introns as ancestral eukaryotic elements, Trends Genet., 33, 773–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yenerall, P., and Zhou, L. (2012) Identifying the mechanisms of intron gain: progress and trends, Biol. Direct., 7, 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Amit, M., Sela, N., Keren, H., Melamed, Z., Muler, I., Shomron, N., Izraeli, S., and Ast, G. (2007) Biased exonization of transposed elements in duplicated genes: a lesson from the TIF–IA gene, BMC Mol. Biol., 8, 109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Du, Z., Yang, C., Rothschild, M. F., and Ross, J. (2013) Novel microRNA families expanded in the human genome, BMC Genom., 14, 98–105.

    Article  CAS  Google Scholar 

  28. Tan, S., Cardoso–Moreira, M., Shi, W., Zhang, D., Huang, J., Mao, Y., Jia, H., Zhang, Y., Chen, C., Shao, Y., Leng, L., Liu, Z., Huang, X., Long, M., and Zhang, Y. E. (2016) LTR–mediated retroposition as a mechanism of RNA–based duplication in metazoans, Genome Res., 26, 1663–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, L., Shen, S., Tye, A., Cai, J. J., Jiang, P., Davidson, B. L., and Xing, Y. (2008) Diverse splicing patterns of exonized Alu elements in human tissues, PLoS Genet., 4, e1000225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sela, N., Kim, E., and Ast, G. (2010) The role of transposable elements in the evolution of non–mammalian vertebrates and invertebrates, Genome Biol., 11, R59.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Belancio, V. P., Roy–Engel, A. M., and Deininger, P. L. (2010) All y’all need to know ‘bout retroelements in cancer, Semin. Cancer Biol., 20, 200–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baskaev, K. K. (2015) New Method of Large–Scale Search for Hypomethylated Regulatory Sites in Eukaryotic Genomes: PhD in Biology [in Russian], Moscow.

    Google Scholar 

  33. Schmitz, J., and Brosius, J. (2011) Exonization of transposed elements: a challenge and opportunity for evolution, Biochimie, 93, 1928–1934.

    Article  CAS  PubMed  Google Scholar 

  34. Hadjiargyrou, M., and Delihas, N. (2013) The intertwining of transposable elements and non–coding RNAs, Int. J. Mol. Sci., 14, 13307–13328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang, D., Su, Y., Wang, X., Lei, H., and Yu, J. (2012) Transposon–derived and satellite–derived repetitive sequences play distinct functional roles in mammalian intron size expansion, Evol. Bioinform. Online, 8, 301–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, W., Prazak, L., Chatterjee, N., Gruninger, S., Krug, L., Theodorou, D., and Dubnau, J. (2013) Activation of transposable elements during aging and neuronal decline in Drosophila, Nat. Neurosci., 16, 529–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kralovicova, J., Patel, A., Searle, M., and Vorechovsky, I. (2015) The role of short RNA loops in recognition of a single–hairpin exon derived from a mammalian–wide interspersed repeat, RNA Biol., 12, 54–69.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nozu, K., Lijima, K., Igarashi, T., Yamada, S., Kralovicova, J., Nozu, Y., Yamamura, T., Minamikawa, S., Morioka, I., Ninchoji, T., Kaito, H., Nakanishi, K., and Vorechovsky, I. (2017) A birth of bipartite exon by intragenic deletion, Mol. Genet. Genom. Med., 5, 287–294.

    Article  CAS  Google Scholar 

  39. Kovalskaya, O. N., Sergiev, P. V., Bogdanov, A. A., and Dontsova, O. A. (2007) Structurally functional anatomy of the signal–recognizing particle: from bacteria to mammals, Usp. Biol. Khim., 47, 129–188.

    CAS  Google Scholar 

  40. McClintock, B. (1984) The significance of responses of the genome to challenge, Science, 226, 792–801.

    Article  CAS  PubMed  Google Scholar 

  41. Vasil’eva, L. A., Vykhristyuk, O. V., Antonenko, O. V., and Zakharov, I. K. (2007) Induction of transpositions of mobile genetic elements in the Drosophila melanogaster genome by different stress factors, Vestnik VOGiS, 11, 662–671.

    Google Scholar 

  42. Lukash, L. L. (2007) Mutagenesis induced by integration processes and evolution of nuclear genome, Biopolym. Cell, 23, 172–187.

    Article  CAS  Google Scholar 

  43. Yurchenko, N. N., Kovalenko, L. V., and Zakharov, I. K. (2011) Mobile genetic elements: instability of genes and genomes, Vavilov Zh. Genet. Selektsii, 15, 261–270.

    Google Scholar 

  44. Masuta, Y., Nozawa, K., Takagi, H., Yaegashi, H., Tanaka, K., Ito, T., Saito, H., Kobayashi, H., Matsunaga, W., Masuda, S., Kato, A., and Ito, H. (2017) Inducible transposition of a heat–activated retrotransposon in tissue culture, Plant. Cell Physiol., 58, 375–384.

    PubMed  CAS  Google Scholar 

  45. Kiselev, O. I. (2013) Endogenous retroviruses: structure and functions in the human genome, Vopr. Virusol., 1, 102–115.

    Google Scholar 

  46. Kitkumthorn, N., and Mutirangura, A. (2011) Long interspersed nuclear element–1 hypomethylation in cancer: biology and clinical applications, Clin. Epigenet., 2, 315–330.

    Article  CAS  Google Scholar 

  47. Khowutthitham, S., Ngamphiw, C., Wanichnopparat, W., Suwanwongse, K., Tongsima, S., Aporntewan, C., and Mutirangura, A. (2012) Intragenic long interspersed element–1 sequences promote promoter hypermethylation in lung adenocarcinoma, multiple myeloma and prostate cancer, Genes Genom., 34, 517–528.

    CAS  Google Scholar 

  48. Polavarapu, N., Marino–Ramirez, L., Landsman, D., McDonald, J. F., and Jordan, I. K. (2008) Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA, BMC Genom., 9, 226–235.

    Article  CAS  Google Scholar 

  49. Feschotte, C. (2008) The contribution of transposable elements to the evolution of regulatory networks, Nat. Rev. Genet., 9, 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dupressoir, A., Lavialle, C., and Heidmann, T. (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation, Placenta, 33, 663–671.

    Article  CAS  PubMed  Google Scholar 

  51. Castellano, L., Rizzi, E., Krell, J., Di Cristina, M., Galizi, R., Mori, A., Tam, J., De Bellis, G., Stebbing, J., Crisanti, A., and Nolan, T. (2015) The germline of the malaria mosquito produces abundant miRNAs, endo–siRNAs and 29–nt small RNAs, BMC Genom., 16, 100–106.

    Google Scholar 

  52. Aziz, R. K., Breitbart, M., and Edwards, R. A. (2010) Transposase are the most abundant, most ubiquitous genes in nature, Nucleic Acids Res., 38, 4207–4217.

    Article  CAS  PubMed  Google Scholar 

  53. Duan, C. G., Wang, X., Pan, L., Miki, D., Tang, K., Hsu, C. C., Lei, M., Zhong, Y., Hou, Y. J., Wang, Z., Zhang, Z., Mangrauthia, S. K., Xu, H., Zhang, H., Dilkes, B., Tao, W. A., and Zhu, J. K. (2017) A pair of transposon–derived proteins function in a histone acetyltransferase complex for active DNA demethylation, Cell Res., 27, 226–240.

    Article  CAS  PubMed  Google Scholar 

  54. Kurnosov, A. A., Ustyugova, S. V., Nazarov, V., Minervina, A. A., Komkov, A. Y., Shugay, M., Pogorelyy, M. V., Khodosevich, K. V., Mamedov, I. Z., and Lebedev, Y. B. (2015) The evidence for increased L1 activity in the site of human adult brain neurogenesis, PLoS One, 10, e0117854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Casacuberta, E. (2017) Drosophila: retrotransposons making up telomeres, Viruses, 9, pii: E192.

    Article  PubMed  Google Scholar 

  56. Titov, I. I., and Vorozheikin, P. S. (2011) MiRNA–containing human transposons, Vavilov Zh. Genet. Selektsii, 15, 323–326.

    Google Scholar 

  57. Wang, J., Vicente–Garcia, C., Seruggia, D., Molto, E., Fernandez–Minan, A., Neto, A., Lee, E., Gomez–Skarmeta, J. L., Montoliu, L., Lunyak, V. V., and Jordan, I. K. (2015) MIR retrotransposons sequences provide insulators to the human genome, Proc. Natl. Acad. Sci. USA, 112, 4428–4437.

    Article  CAS  Google Scholar 

  58. Buzdin, A. A. (2002) High–throughput Comparison of the Retroelement Distribution in DNA of Human and Chimpanzee: PhD in Biology [in Russain], Moscow.

    Google Scholar 

  59. Kramerov, D. A., and Vassetzky, N. S. (2011) SINEs, Wiley Interdiscip. Rev. RNA, 2, 772–786.

    Article  CAS  PubMed  Google Scholar 

  60. McClintock, B. (1951) Chromosome organization and genic expression, Cold Spring Harb. Symp. Quant. Biol., 16, 13–47.

    Article  CAS  PubMed  Google Scholar 

  61. Grandi, F. C., Rosser, J. M., Newkirk, S. J., Yin, J., Jiang, X., Xing, Z., Whitmore, L., Bashir, S., Ivics, Z., Izsvak, Z., Ye, P., Yu, Y. E., and An, W. (2015) Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites, Genome Res., 25, 1135–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Glazko, V. I. (2013) Problems of “marker–aided selection”, Genetika, 2, 16–22.

    Google Scholar 

  63. Iniguez, L. P., and Hernandez, G. (2017) The evolutionary relationship between alternative splicing and gene duplication, Front. Genet., 8, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Baskaev, K. K., and Buzdin, A. A. (2011) Evolutionary recent groups of genetic mobile elements in human genome, Vavilov Zh. Genet. Selektsii, 15, 313–322.

    Google Scholar 

  65. Suntsova, M., Garazha, A., Ivanova, A., Kaminsky, D., Zhavoronkov, A., and Buzdin, A. (2015) Molecular functions of human endogenous retroviruses in health and disease, Cell. Mol. Life Sci., 72, 3653–3675.

    Article  CAS  PubMed  Google Scholar 

  66. Lippman, Z., May, B., Yordan, C., Singer, T., and Martienssen, R. (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification, PLoS Biol., 1, 420–428.

    Article  CAS  Google Scholar 

  67. Upadhyay, U., Srivastava, S., Khatri, I., Nanda, J. S., Subramanian, S., Arora, A., and Singh, J. (2017) Ablation of RNA interference and retrotransposons accompany acquisition and evolution of transposases to heterochromatin protein CENPB, Mol. Biol. Cell, 28, 1132–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu, C., Tian, J., and Mo, B. (2013) SiRNA–mediated DNA methylation and H3K9 dimethylation in plants, Protein Cell, 4, 656–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Spengler, R. M., Oakley, C. K., and Davidson, B. L. (2014) Functional microRNAs and target sites are created by line–age–specific transposition, Hum. Mol. Genet., 23, 1783–1793.

    Article  CAS  PubMed  Google Scholar 

  70. Lu, D., Davis, M. P., Abreu–Goodger, C., Wang, W., Campos, L. S., Siede, J., Vigorito, E., Skarnes, W. C., Dunham, I., Enright, A. J., and Liu, P. (2012) miR–25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fibroblast cells to iPSCs, PLoS One, 7, e40938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nozawa, M., Miura, S., and Nei, M. (2012) Origins and evolution of microRNA genes in plant species, Genome Biol. Evol., 4, 230–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Samantarrai, D., Dash, S., Chhetri, B., and Mallick, B. (2013) Genomic and epigenomic cross–talks in the regulatory landscape of miRNAs in breast cancer, Mol. Cancer Res., 11, 315–328.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, G., Esteve, P., Chin, H. G., Terragni, J., Dai, N., Correa, I. R., Jr., and Pradhan, S. (2015) Small RNA–mediated DNA (cytosine–5) methyltransferase 1 inhibition leads to aberrant DNA methylation, Nucleic Acids Res., 43, 6112–6124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morita, S., Horii, T., Kimura, M., Ochiya, T., Tajima, S., and Hatada, I. (2013) MiR–29 represses the activities of DNA methyltransferases and DNA demethylases, Int. J. Mol. Sci., 14, 14647–14658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhang, H., Tao, Z., Hong, H., Chen, Z., Wu, C., Li, X., Xiao, J., and Wang, S. (2016) Transposon–derived small RNA is responsible for modified function of WRKY45 locus, Nat. Plants, 2, 16016–16023.

    Article  CAS  PubMed  Google Scholar 

  76. Molaro, A., Falciatori, I., Hodges, E., Aravin, A. A., Marran, K., Rafii, S., McCombie, W. R., Smith, A. D., and Hannon, G. J. (2014) Two waves of de novo methylation during mouse germ cell development, Genes Dev., 28, 1544–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fu, A., Jacobs, D. I., and Zhu, Y. (2014) Epigenome–wide analysis of piRNAs in gene–specific DNA methylation, RNA Biol., 11, 1301–1312.

    Article  PubMed  Google Scholar 

  78. Shao, P., Liao, J., Guan, D. G., Yang, J. H., Zheng, L. L., Jing, Q., Zhou, H., and Qu, L. H. (2012) Drastic expression change of transposon–derived piRNA–like RNAs and microRNAs in early stages of chicken embryos implies a role in gastrulation, RNA Biol., 9, 212–227.

    Article  CAS  PubMed  Google Scholar 

  79. Kapusta, A., Kronenberg, Z., Lynch, V. J., Zhuo, X., Ramsay, L., Bourgue, G., Yandell, M., and Feschotte, C. (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs, PLoS Genet., 9, e1003470.

    CAS  PubMed  Google Scholar 

  80. Long, Y., Wang, X., Youmans, D. T., and Cech, T. R. (2017) How do lncRNAs regulate transcription, Sci. Adv., 3, eaao2110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lisitsyn, N. A., Chernyi, A. A., and Karpov, V. L. (2015) The role of long noncoding RNAs in carcinogenesis, Mol. Biol., 49, 561–570.

    Article  CAS  Google Scholar 

  82. Ramsay, L., Marchetto, M. C., Caron, M., Chen, S. H., Busche, S., Kwan, T., Pastinen, T., Gage, F. H., and Bourgue, G. (2017) Conserved expression of transposon–derived non–coding transcripts in primate stem cells, BMC Genom., 18, 214–226.

    Article  CAS  Google Scholar 

  83. Iwakiri, J., Terai, G., and Hamada, M. (2017) Computational prediction of lncRNA–mRNA interactions by integrating tissue specificity in human transcriptome, Biol. Direct., 12, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Deng, B., Cheng, X., Li, H., Qin, J., Tian, M., and Jin, G. (2017) Microarray expression profiling in the denervated hippocampus identifies long noncoding RNAs functionally involved in neurogenesis, BMC Mol. Biol., 18, 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Faulkner, G. J. (2011) Retrotransposons: mobile and mutagenic from conception to death, FEBS Lett., 585, 1589–1594.

    Article  CAS  PubMed  Google Scholar 

  86. Richardson, S. R., Morell, S., and Faulkner, G. J. (2014) L1 retrotransposons and somatic mosaicism in the brain, Annu. Rev. Genet., 48, 1–27.

    Article  CAS  PubMed  Google Scholar 

  87. Upton, K. R., Gerhardt, D. J., Jesuadian, J. S., Richardson, S. R., Sanchez–Lugue, F. J., Bodea, G. O., Ewing, A. D., Salvador–Palmoegue, C., van der Knaap, M. S., Brennan, P. M., Vanderver, A., and Faulkner, G. J. (2015) Ubiquitous L1 mosaicism in hippocampal neurons, Cell, 161, 22–39.

    Article  CAS  Google Scholar 

  88. Patel, T., and Hobert, O. (2017) Coordinated control of terminal differentiation and restriction of cellular plasticity, eLife, 6, e24100.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wissing, S., Munoz–Lopez, M., Macia, A., Yang, Z., Montano, M., Collins, W., Garcia–Perez, J. L., Moran, J. V., and Green, W. C. (2012) Reprogramming somatic cells into iPS cell activates LINE–1 retroelement mobility, Hum. Mol. Genet., 21, 208–218.

    Article  PubMed  CAS  Google Scholar 

  90. Klawitter, S., Fuchs, N. V., Upton, K. R., Munoz–Lopez, M., Shukkla, R., Wang, J., Faulkner, G. J., and Schumann, G. G. (2016) Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells, Nat. Commun., 7, 10286–10301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baranov, V. S., and Kuznetsova, T. V. (2007) Cytogenetics of Human Embryonic Development [in Russian], Izdatelstvo N–L, St. Petersburg.

    Google Scholar 

  92. Haig, D. (2016) Transposable elements: self–seekers of the germline, team–players of the soma, Bioessays, 38, 1158–1166.

    CAS  PubMed  Google Scholar 

  93. Wang, J., Li, X., Wang, L., Li, J., Zhao, Y., Bou, G., Li, Y., Jiao, G., Shen, X., Wei, R., Liu, S., Xie, B., Lei, L., Li, W., Zhou, Q., and Liu, Z. (2016) A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two–cell embryos, EMBO Rep., 17, 1452–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, Y., Qi, X., Gong, L., Xing, G., Chen, M., Miao, L., Yao, J., Suzuki, T., Furihata, C., Luan, Y., and Ren, J. (2012) Identification of BC005512 as a DNA damage responsive murine endogenous retrovirus of GLN family involved in cell growth regulation, PLoS One, 7, e35010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Eckersley–Maslin, M. A., Svensson, V., Krueger, C., Stubbs, T. M., Giehr, P., Krueger, F., Miragaia, R. J., Kyriakopoulos, C., Berrrens, R. V., Milagre, I., Walter, J., Teichmann, S. A., and Reik, W. (2016) MERVL/Zscan4 network activation results in transient genome–wide DNA demethylation of mESCs, Cell Rep., 17, 179–192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Bray, S., Turnbull, M., Hebert, S., and Douville, R. N. (2016) Insight into the ERVK integrase–propensity for DNA damage, Front. Microbiol., 7, 1941.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Galli, U. M., Sauter, M., Lecher, B., Maurer, S., Herbst, H., Roemer, K., and Mueller–Lantzsch, N. (2005) Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors, Oncogene, 24, 3223–3228.

    CAS  PubMed  Google Scholar 

  98. Moran, J. V., Holmes, S. E., Naas, T. P., DeBerardinis, R. J., Boeke, J. D., and Kazazian, H. H., Jr. (1996) High frequency retrotransposition in cultured mammalian cells, Cell, 87, 917–927.

    Article  CAS  PubMed  Google Scholar 

  99. De Berardinis, R. J., Goodier, J. L., Ostertag, E. M., and Kazazian, H. H. (1998) Rapid amplification of a retrotransposons subfamily is evolving the mouse genome, Nat. Genet., 20, 288–290.

    Article  CAS  Google Scholar 

  100. Wei, W., Morrish, T. A., and Alisch, R. S. (2000) A transient assay reveals that cultured human cells can accommodate multiple LINE–1 retrotransposition events, Anal. Biochem., 284, 435–438.

    Article  CAS  PubMed  Google Scholar 

  101. Morrish, T. A., Gilbert, N., Myers, J. S., Vincent, B. J., Stamato, T. D., Taccioli, G. E., Batzer, M. A., and Moran, J. V. (2002) DNA repair mediated by endonuclease–independent LINE–1 retrotransposition, Nat. Genet., 31, 159–165.

    Article  CAS  PubMed  Google Scholar 

  102. Han, J. S., and Boeke, J. D. (2004) A highly active synthetic mammalian retrotransposons, Nature, 429, 314–318.

    Article  CAS  PubMed  Google Scholar 

  103. Ostertag, E. M., De Berardinis, R. J., Goodier, J. L., Zhang, Y., Yang, N., Gerton, G. L., and Kazazian, H. H., Jr. (2002) A mouse model of human L1 retrotransposition, Nat. Genet., 32, 655–660.

    Article  CAS  PubMed  Google Scholar 

  104. Prak, E. T., Dodson, A. W., Farkash, E. A., and Kazazian, H. H. (2003) Tracking an embryonic L1 retrotransposition event, Proc. Natl. Acad. Sci. USA, 100, 1832–1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Muotri, A. R., Chu, V. T., Marchetto, M. C., Deng, W., Moran, J. V., and Gage, F. H. (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition, Nature, 435, 903–910.

    Article  CAS  PubMed  Google Scholar 

  106. Van den Hurk, J. A., Meij, I. C., and Seleme, M. C. (2007) L1 retrotransposition can occur early in human embryonic development, Hum. Mol. Genet., 16, 1587–1592.

    Article  PubMed  CAS  Google Scholar 

  107. Coufal, N. G., Garcia–Perez, J. L., Peng, G. E., Yeo, G. W., Mu, Y., Lovci, M. T., Morell, M., O’Shea, K. S., Moran, J. V., and Gage, F. H. (2009) L1 retrotransposition in human neural progenitor cells, Nature, 460, 1127–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Macia, A., Munoz–Lopez, M., Cortes, J. L., Hastings, R. K., Morell, S., Lucena–Aguilar, G., Marchal, J. A., Badge, R. M., and Garcia–Perez, J. L. (2011) Epigenetic control of retrotransposons expression in human embryonic stem cells, Mol. Cell. Biol., 31, 300–316.

    Article  CAS  PubMed  Google Scholar 

  109. Marchetto, M. C., Narvaiza, I., Denli, A. M., Benner, C., Lazzarini, T. A., Nathanson, J. L., Paguola, A. C. M., Desai, K. N., Herai, R. H., Weitzman, M. D., Yeo, G. W., Muotri, A. R., and Gage, F. H. (2013) Differential L1 regulation in pluripotent stem cells of humans and apes, Nature, 503, 525–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pavlicev, M., Hiratsuka, K., Swaggart, K. A., Dunn, C., and Muglia, L. (2015) Detecting endogenous retrovirusdriven tissue–specific gene transcription, Genome Biol. Evol., 7, 1082–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee, K. H., Chiu, S., Lee, Y. K., Greenhalgh, D. G., and Cho, K. (2012) Age–dependent and tissue–specific structural changes in the C57BL/6J mouse genome, Exp. Mol. Pathol., 93, 167–172.

    Article  CAS  PubMed  Google Scholar 

  112. Lee, K. H., Yee, L., Lim, D., Greenhalgh, D., and Cho, K. (2015) Temporal and spatial rearrangements of a repetitive element array on C57BL/6J mouse genome, Exp. Mol. Pathol., 98, 439–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Evrony, G. D., Cai, X., Lee, E., Hills, L. B., Elhosary, P. C., Lehmann, H. S., Parker, J. J., Atabay, K. D., Gilmore, E. C., Poduri, A., Park, P. J., and Walsh, C. A. (2012) Singleneuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain, Cell, 151, 483–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Garcia–Perez, J. L., Marchetto, M. C., Muotri, A. R., Coufal, N. G., Gage, F. H., O’Shea, K. S., and Moran, J. V. (2007) LINE–1 retrotransposition in human embryonic stem cells, Hum. Mol. Genet., 16, 1569–1577.

    Article  PubMed  CAS  Google Scholar 

  115. Kubo, S., Seleme, M. C., Soifer, H. S., Perez, J. L., Moran, J. V., Kazazian, H. H., Jr., and Kasahara, N. (2006) L1 retrotransposition in non–dividing and primary human somatic cells, Proc. Natl. Acad. Sci. USA, 103, 8036–8041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shi, X., Seluanov, A., and Gorbunova, V. (2007) Cell divisions are required for L1 retrotransposition, Mol. Cell. Biol., 27, 1264–1270.

    Article  CAS  PubMed  Google Scholar 

  117. Gottesman, S., and Storz, G. (2015) RNA reflections: converging of Hfq, RNA, 21, 511–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, R. C., Feinbaum, R. L., and Ambro, V. (1993) The C. elegans heterochronic gene lin–4 encodes small RNAs with antisense complementarity to lin–14, Cell, 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  119. Shabalina, S. A., and Koonin, E. V. (2008) Origins and evolution of eukaryotic RNA interference, Trends Ecol. Evol., 23, 578–587.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Avesson, L., Reimegard, J., Wagner, E. G. H., and Soderbom, F. (2012) MicroRNAs in Amoebozoa: deep sequencing of the small RNA population in the social amoeba Dictyostelium discoideum reveals developmentally regulated microRNAs, RNA, 18, 1771–1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pashkovskiy, P. P., and Ryazansky, S. S. (2013) Biogenesis, evolution, and functions of plant microRNAs, Biochemistry (Moscow), 78, 627–637.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mustafin.

Additional information

Original Russian Text © R. N. Mustafin, E. K. Khusnutdinova, 2018, published in Biokhimiya, 2018, Vol. 83, No. 3, pp. 291–308.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafin, R.N., Khusnutdinova, E.K. The Role of Transposable Elements in Emergence of Metazoa. Biochemistry Moscow 83, 185–199 (2018). https://doi.org/10.1134/S000629791803001X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791803001X

Keywords

Navigation