Skip to main content
Log in

MicroRNA sponge knockdowns miR-483-5p and upregulates serum ALT/AST in transgenic mice

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

MicroRNAs are involved in many biological processes. Studying microRNA function requires genetic strategies generating loss-of-function phenotypes, especially in vivo. However, few microRNA loss-of-function models have been reported in mice. Here, we generated several transgenic mouse lines to stably and specifically knockdown miR-483-5p by overexpressing microRNA sponges from CAG promoters. The different levels of expression of microRNA sponges resulted in different levels of mature miR-483-5p, which upregulated serum ALT/AST in these transgenic lines. These results indicate microRNA sponges are effective in mice in vivo, and they can be used in microRNA loss-of-function research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALT:

alanine aminotransferase

AST:

aspartate aminotransferase

HE:

hematoxylin-eosin (staining)

LOF:

loss-of-function (research)

miRNAs:

microRNAs

UTR:

untranslated region

References

  1. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  2. Costinean, S., Zanesi, N., Pekarsky, Y., Tili, E., Volinia, S., Heerema, N., and Croce, C. M. (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice, Proc. Natl. Acad. Sci. USA, 103, 7024–7029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao, Y., Samal, E., and Srivastava, D. (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis, Nature, 436, 214–220.

    Article  CAS  PubMed  Google Scholar 

  4. Ebert, M. S., Neilson, J. R., and Sharp, P. A. (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells, Nat. Methods, 4, 721–726.

    Article  CAS  PubMed  Google Scholar 

  5. Loya, C. M., Lu, C. S., Van Vactor, D., and Fulga, T. A. (2009) Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms, Nat. Methods, 6, 897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., Leyva, A., Weigel, D., Garcia, J. A., and Paz-Ares, J. (2007) Target mimicry provides a new mechanism for regulation of microRNA activity, Nat. Genet., 39, 1033–1037.

    Article  CAS  PubMed  Google Scholar 

  7. Chitwood, D. H., and Timmermans, M. C. (2007) Target mimics modulate miRNAs, Nat. Genet., 39, 935–936.

    Article  CAS  PubMed  Google Scholar 

  8. Riehle, K. J., Campbell, J. S., McMahan, R. S., Johnson, M. M., Beyer, R. P., Bammler, T. K., and Fausto, N. (2008) Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3, J. Exp. Med., 205, 91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horwich, M. D., and Zamore, P. D. (2008) Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells, Nat. Protoc., 3, 1537–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Medina, P. P., and Slack, F. J. (2009) Inhibiting microRNA function in vivo, Nat. Methods, 6, 37–38.

    Article  CAS  PubMed  Google Scholar 

  11. Cohen, S. M. (2009) Use of microRNA sponges to explore tissue-specific microRNA functions in vivo, Nat. Methods, 6, 873–874.

    Article  CAS  PubMed  Google Scholar 

  12. Zhiguo, W. (2009) MicroRNA Interference Technologies, Springer, Heidelberg, Germany.

    Google Scholar 

  13. Ebert, M. S., and Sharp, P. A. (2010) MicroRNA sponges: progress and possibilities, RNA, 16, 2043–2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu, Q., Sun, W., Okano, K., Chen, Y., Zhang, N., Maeda, T., and Palczewski, K. (2011) Sponge transgenic mouse model reveals important roles for the microRNA-183 (miR-183)/96/182 cluster in postmitotic photoreceptors of the retina, J. Biol. Chem., 286, 31749–31760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu, Y., Xiao, J., Lin, H., Bai, Y., Luo, X., Wang, Z., and Yang, B. (2009) A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference, Nucleic Acids Res., 37, e24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Davis, S., Lollo, B., Freier, S., and Esau, C. (2006) Improved targeting of miRNA with antisense oligonucleotides, Nucleic Acids Res., 34, 2294–2304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scherr, M., Venturini, L., Battmer, K., Schaller-Schoenitz, M., Schaefer, D., Dallmann, I., Ganser, A., and Eder, M. (2007) Lentivirus-mediated antagomir expression for specific inhibition of miRNA function, Nucleic Acids Res., 35, e149.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005) Silencing of microRNAs in vivo with “antagomirs”, Nature, 438, 685–689.

    Article  PubMed  Google Scholar 

  19. Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B. D., Ponzoni, M., and Naldini, L. (2009) Knockdown of microRNA in vivo by lentiviral vectors, Nat. Methods, 6, 63–66.

    Article  CAS  PubMed  Google Scholar 

  20. Iliopoulos, D., Malizos, K. N., Oikonomou, P., and Tsezou, A. (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks, PLoS One, 3, e3740.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Soon, P. S., Tacon, L. J., Gill, A. J., Bambach, C. P., Sywak, M. S., Campbell, P. R., Yeh, M. W., Wong, S. G., Clifton-Bligh, R. J., Robinson, B. G., and Sidhu, S. B. (2009) miR-195 and miR-483-5p identified as predictors of poor prognosis in adrenocortical cancer, Clin. Cancer Res., 15, 7684–7692.

    Article  CAS  PubMed  Google Scholar 

  22. Ma, N., Wang, X.-D., Qiao, Y., Li, F.-Y., Yang, B.-F., Lv, Y.-J., Shan, H.-L., Zheng, X.-F., and Gao, X. (2010) Construction of pCAGGs-miR-483 plasmid and establishment of a miR-483 transgenic mouse model, Chinese J. Biochem. Mol. Biol., 26, 478–483.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Liu.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-325, November 6, 2017.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, D., Zhang, X. et al. MicroRNA sponge knockdowns miR-483-5p and upregulates serum ALT/AST in transgenic mice. Biochemistry Moscow 83, 54–59 (2018). https://doi.org/10.1134/S0006297918010078

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918010078

Keywords

Navigation