Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 13, pp 1702–1715 | Cite as

Three-finger proteins from the Ly6/uPAR family: Functional diversity within one structural motif

  • N. A. Vasilyeva
  • E. V. Loktyushov
  • M. L. Bychkov
  • Z. O. Shenkarev
  • E. N. LyukmanovaEmail author
Review

Abstract

The discovery in higher animals of proteins from the Ly6/uPAR family, which have structural homology with snake “three-finger” neurotoxins, has generated great interest in these molecules and their role in the functioning of the organism. These proteins have been found in the nervous, immune, endocrine, and reproductive systems of mammals. There are two types of the Ly6/uPAR proteins: those associated with the cell membrane by GPI-anchor and secreted ones. For some of them (Lynx1, SLURP-1, SLURP-2, Lypd6), as well as for snake α-neurotoxins, the target of action is nico- tinic acetylcholine receptors, which are widely represented in the central and peripheral nervous systems, and in many other tissues, including epithelial cells and the immune system. However, the targets of most proteins from the Ly6/uPAR family and the mechanism of their action remain unknown. This review presents data on the structural and functional properties of the Ly6/uPAR proteins, which reveal a variety of functions within a single structural motif.

Keywords

three-finger proteins nicotinic acetylcholine receptor Ly6/uPAR Lynx1 Lypd6 SLURP 

Abbreviations

a-Bgtx

a-bungarotoxin

ACh

acetylcholine

GABA

gamma-aminobutyric acid

GPI-anchor

glycophos-phatidylinositol anchor

Ly6

lymphocyte antigen 6

mAChR

muscarinic acetylcholine receptor

nAChR

nicotinic acetyl-choline receptor

tPA

tissue plasminogen activator

uPAR

urokinase plasminogen activator receptor

WTX

nonconven-tional toxin from Naja kaouthia

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koh, K., Joiner, W. J., Wu, M. N., Yue, Z., Smith, C. J., and Sehgal, A. (2008) Identification of SLEEPLESS, a sleep-promoting factor, Science, 321, 372–376.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ozhan, G., Sezgin, E., Wehner, D., Pfister, A. S., Kuhl, S. J., Kagermeier-Schenk, B., Kuhl, M., Schwille, P., and Weidinger, G. (2013) Lypd6 enhances Wnt/β-catenin signaling by promoting Lrp6 phosphorylation in raft plasma membrane domains, Dev. Cell, 26, 331–345.CrossRefPubMedGoogle Scholar
  3. 3.
    Da Silva, S. M., Gates, P. B., and Brockes, J. P. (2002) The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration, Dev. Cell, 3, 547–555.CrossRefPubMedGoogle Scholar
  4. 4.
    Fry, B. G., Wuster, W., Kini, R. M., Brusic, V., Khan, A., Venkataraman, D., and Rooney, A. P. (2003) Molecular evolution and phylogeny of elapid snake venom three-finger toxins, J. Mol. Evol., 57, 110–129.CrossRefPubMedGoogle Scholar
  5. 5.
    Hruska, M., Keefe, J., Wert, D., Tekinay, A. B., Hulce, J. J., Ibanez-Tallon, I., and Nishi, R. (2009) Prostate stem cell antigen is an endogenous lynx1-like prototoxin that antagonizes alpha7-containing nicotinic receptors and prevents programmed cell death of parasympathetic neurons, J. Neurosci., 29, 14847–14854.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Miwa, J. M., Ibanez-Tallon, I., Crabtree, G. W., Sanchez, R., Sali, A., Role, L. W., and Heintz, N. (1999) Lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS, Neuron, 23, 105–114.CrossRefPubMedGoogle Scholar
  7. 7.
    Kini, R. M., and Doley, R. (2010) Structure, function and evolution of three-finger toxins: mini proteins with multiple targets, Toxicon, 56, 855–867.CrossRefPubMedGoogle Scholar
  8. 8.
    Loughner, C. L., Bruford, E. A., McAndrews, M. S., Delp, E. E., Swamynathan, S., and Swamynathan, S. K. (2016) Organization, evolution and functions of the human and mouse Ly6/uPAR family genes, Hum. Genom., 10, 10.CrossRefGoogle Scholar
  9. 9.
    Tsetlin, V. I., and Hucho, F. (2004) Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications, FEBS Lett., 557, 9–13.CrossRefPubMedGoogle Scholar
  10. 10.
    Lyukmanova, E. N., Shenkarev, Z. O., Schulga, A. A., Ermolyuk, Y. S., Mordvintsev, D. Y., Utkin, Y. N., Shoulepko, M. A., Hogg, R. C., Bertrand, D., Dolgikh, D. A., Tsetlin, V. I., and Kirpichnikov, M. P. (2007) Bacterial expression, NMR, and electrophysiology analysis of chimeric short/long-chain alpha-neurotoxins acting on neuronal nicotinic receptors, J. Biol. Chem., 282, 24784–24791.CrossRefPubMedGoogle Scholar
  11. 11.
    Huang, S., Li, S. X., Bren, J., Cheng, K., Gomoto, R., Chen, L., and Sine, S. M. (2013) Complex between α-bun-garotoxin and an α7 nicotinic receptor ligand-binding domain chimaera, Biochem. J., 454, 303–310.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Servent, D., Blanchet, G., Mourier, G., Marquer, C., Marcon, E., and Fruchart-Gaillard, C. (2011) Muscarinic toxins, Toxicon, 58, 455–463.CrossRefPubMedGoogle Scholar
  13. 13.
    Marquer, C., Fruchart-Gaillard, C., Letellier, G., Marcon, E., Mourier, G., Zinn-Justin, S., Menez, A., Servent, D., and Gilquin, B. (2011) Structural model of ligand-G protein-coupled receptor (GPCR) complex based on experimental double mutant cycle data: MT7 snake toxin bound to dimeric hM1 muscarinic receptor, J. Biol. Chem., 286, 31661–31675.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nirthanan, S., Gopalakrishnakone, P., Gwee, M. C., Khoo, H. E., and Kini, R. M. (2003) Non-conventional toxins from Elapid venoms, Toxicon, 41, 397–407.CrossRefPubMedGoogle Scholar
  15. 15.
    Mordvintsev, D. Y., Polyak, Y. L., Rodionov, D. I., Jakubik, J., Dolezal, V., Karlsson, E., Tsetlin, V. I., and Utkin, Y. N. (2009) Weak toxin WTX from Naja kaouthia cobra venom interacts with both nicotinic and muscarinic acetylcholine receptors, FEBS J., 276, 5065–5075.CrossRefPubMedGoogle Scholar
  16. 16.
    Lyukmanova, E. N., Shulepko, M. A., Shenkarev, Z. O., Kasheverov, I. E., Chugunov, A. O., Kulbatskii, D. S., Myshkin, M. Y., Utkin, Y. N., Efremov, R. G., Tsetlin, V. I., Arseniev, A. S., Kirpichnikov, M. P., and Dolgikh, D. A. (2016) Central loop of non-conventional toxin WTX from Naja kaouthia is important for interaction with nicotinic acetylcholine receptors, Toxicon, 119, 274–279.CrossRefPubMedGoogle Scholar
  17. 17.
    Lyukmanova, E. N., Shenkarev, Z. O., Shulepko, M. A., Paramonov, A. S., Chugunov, A. O., Janickova, H., Dolejsi, E., Dolezal, V., Utkin, Y. N., Tsetlin, V. I., Arseniev, A. S., Efremov, R. G., Dolgikh, D. A., and Kirpichnikov, M. P. (2015) Structural insight into specificity of interactions between nonconventional three-finger weak toxin from Naja kaouthia (WTX) and muscarinic acetylcholine receptors, J. Biol Chem., 290, 23616–23630.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rosso, J. P., Schwarz, J. R., Diaz-Bustamante, M., Ceard, B., Gutierrez, J. M., Kneussel, M., Pongs, O., Bosmans, F., and Bougis, P. E. (2015) MmTX1 and MmTX2 from coral snake venom potently modulate GABAA receptor activity, Proc. Natl. Acad. Sci. USA, 112, E891–900.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hannan, S., Mortensen, M., and Smart, T. G. (2015) Snake neurotoxin α-bungarotoxin is an antagonist at native GABA(A) receptors, Neuropharmacology, 93, 28–40.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kudryavtsev, D. S., Shelukhina, I. V., Son, L. V., Ojomoko, L. O., Kryukova, E. V., Lyukmanova, E. N., Zhmak, M. N., Dolgikh, D. A., Ivanov, I. A., Kasheverov, I. E., Starkov, V. G., Ramerstorfer, J., Sieghart, W., Tsetlin, V. I., and Utkin, Y. N. (2015) Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors, J. Biol. Chem., 290, 22747–22758.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Diochot, S., Baron, A., Salinas, M., Douguet, D., Scarzello, S., Dabert-Gay, A. S., Debayle, D., Friend, V., Alloui, A., Lazdunski, M., and Lingueglia, E. (2012) Black mamba venom peptides target acid-sensing ion channels to abolish pain, Nature, 490, 552–555.CrossRefPubMedGoogle Scholar
  22. 22.
    Mourier, G., Salinas, M., Kessler, P., Stura, E. A., Leblanc, M., Tepshi, L., Besson, T., Diochot, S., Baron, A., Douguet, D., Lingueglia, E., and Servent, D. (2016) Mambalgin-1 pain-relieving peptide, stepwise solid-phase synthesis, crystal structure, and functional domain for acid-sensing ion channel 1a inhibition, J. Biol. Chem., 291, 2616–2629.CrossRefPubMedGoogle Scholar
  23. 23.
    Efremov, R. G., Volynsky, P. E., Nolde, D. E., Dubovskii, P. V., and Arseniev, A. S. (2002) Interaction of cardiotoxins with membranes: a molecular modeling study, Biophys. J., 83, 144–153.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dubovskii, P. V., Konshina, A. G., and Efremov, R. G. (2014) Cobra cardiotoxins: membrane interactions and pharmacological potential, Curr. Med. Chem., 21, 270–287.CrossRefPubMedGoogle Scholar
  25. 25.
    Feofanov, A. V., Sharonov, G. V., Astapova, M. V., Rodionov, D. I., Utkin, Y. N., and Arseniev, A. S. (2005) Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage, Biochem. J., 390, 11–18.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cervenansky, C., Dajas, F., Harvey, A. L., and Karlsson, E. (1991) in International Encyclopedia of Pharmacology and Therapeutics: Snake Toxins (Harvey, A. L., ed.) Pergamon Press, New York, pp. 303–321.Google Scholar
  27. 27.
    Bourne, Y., Taylor, P., and Marchot, P. (1995) Acetyl-cholinesterase inhibition by fasciculin: crystal structure of the complex, Cell, 83, 503–512.CrossRefPubMedGoogle Scholar
  28. 28.
    Wu, M., Robinson, J. E., and Joiner, W. J. (2014) SLEEP-LESS is a bifunctional regulator of excitability and cholinergic synaptic transmission, Curr. Biol., 24, 621–629.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wu, M., Liu, C. Z., and Joiner, W. J. (2016) Structural analysis and deletion mutagenesis define regions of QUIVER/SLEEPLESS that are responsible for interactions with shaker-type potassium channels and nicotinic acetylcholine receptors, PLoS One, 11, e0148215.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yang, B., Yao, X., Gu, S., Zhang, Y., Liu, Z., and Zhang, Y. (2010) Selectivity of lynx proteins on insect nicotinic acetylcholine receptors in the brown planthopper, Nilaparvata lugens, Insect Mol. Biol., 19, 283–289.CrossRefPubMedGoogle Scholar
  31. 31.
    McNally, J. D., Wu, S. B., Sturgeon, C. M., and Storey, K. B. (2002) Identification and characterization of a novel freezing inducible gene, li16, in the wood frog Rana sylvatica, FASEB J., 16, 902–904.PubMedGoogle Scholar
  32. 32.
    Kumar, A., Gates, P. B., Czarkwiani, A., and Brockes, J. P. (2015) An orphan gene is necessary for preaxial digit formation during salamander limb development, Nat. Commun., 6, 8684.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nomura, K., Tanimoto, Y., Hayashi, F., Harada, E., Shan, X. Y., Shionyu, M., Hijikata, A., Shirai, T., Morigaki, K., and Shimamoto, K. (2017) The role of the Prod1 membrane anchor in newt limb regeneration, Angew. Chem. Int. Ed. Engl., 56, 270–274.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang, M., Li, L., Guo, Q., Zhang, S., Ji, D., and Li, H. (2016) Identification and expression of a new Ly6 gene cluster in zebrafish Danio rerio, with implications of being involved in embryonic immunity, Fish Shellfish Immunol., 54, 230–240.CrossRefPubMedGoogle Scholar
  35. 35.
    Fletcher, C. M., Harrison, R. A., Lachmann, P. J., and Neuhaus, D. (1994) Structure of a soluble, glycosylated form of the human complement regulatory protein CD59, Structure, 2, 185–199.CrossRefPubMedGoogle Scholar
  36. 36.
    Parker, C., Omine, M., Richards, S., Nishimura, J., Bessler, M., Ware, R., Hillmen, P., Luzzatto, L., Young, N., Kinoshita, T., Rosse, W., and Socie, G. (2005) Diagnosis and management of paroxysmal nocturnal hemoglobinuria, Blood, 106, 3699–3709.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Blasi, F., and Carmeliet, P. (2002) uPAR: a versatile signaling orchestrator, Nat. Rev. Mol. Cell Biol., 3, 932–943.CrossRefPubMedGoogle Scholar
  38. 38.
    Su, S. C., Lin, C. W., Yang, W. E., Fan, W. L., and Yang, S. F. (2016) The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies, Expert Opin. Ther. Targets, 20, 551–566.CrossRefPubMedGoogle Scholar
  39. 39.
    Huai, Q., Mazar, A. P., Kuo, A., Parry, G. C., Shaw, D. E., Callahan, J., Li, Y., Yuan, C., Bian, C., Chen, L., Furie, B., Furie, B. C., Cines, D. B., and Huang, M. (2006) Structure of human urokinase plasminogen activator in complex with its receptor, Science, 311, 656–659.CrossRefPubMedGoogle Scholar
  40. 40.
    Ibanez-Tallon, I., Miwa, J. M., Wang, H. L., Adams, N. C., Crabtree, G. W., Sine, S. M., and Heintz, N. (2002) Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynx1, Neuron, 33, 893–903.CrossRefPubMedGoogle Scholar
  41. 41.
    Demars, M. P., and Morishita, H. (2014) Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors, Mol. Brain, 7, 75–79.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nichols, W. A., Henderson, B. J., Yu, C., Parker, R. L., Richards, C. I., Lester, H. A., and Miwa, J. M. (2014) Lynx1 shifts α4β2 nicotinic receptor subunit stoichiometry by affecting assembly in the endoplasmic reticulum, J. Biol. Chem., 289, 31423–31432.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Miwa, J. M., Stevens, T. R., King, S. L., Caldarone, B. J., Ibanez-Tallon, I., Xiao, C., Fitzsimonds, R. M., Pavlides, C., Lester, H. A., Picciotto, M. R., and Heintz, N. (2006) The prototoxin lynx1 acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo, Neuron, 51, 587–600.CrossRefPubMedGoogle Scholar
  44. 44.
    Miwa, J. M., and Walz, A. (2012) Enhancement in motor learning through genetic manipulation of the Lynx1 gene, PLoS One, 7, e43302.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kobayashi, A., Parker, R. L., Wright, A. P., Brahem, H., Ku, P., Oliver, K. M., Walz, A., Lester, H. A., and Miwa, J. M. (2014) Lynx1 supports neuronal health in the mouse dorsal striatum during aging: an ultrastructural investigation, J. Mol. Neurosci., 53, 525–536.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Morishita, H., Miwa, J. M., Heintz, N., and Hensch, T. K. (2010) Lynx1, a cholinergic brake, limits plasticity in adult visual cortex, Science, 330, 1238–1240.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bukhari, N., Burman, P. N., Hussein, A., Demars, M. P., Sadahiro, M., Brady, D. M., Tsirka, S. E., Russo, S., and Morishita, H. (2015) Unmasking proteolytic activity for adult visual cortex plasticity by the removal of Lynx1, J. Neurosci., 35, 12693–12702.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sajo, M., Ellis-Davies, G., and Morishita, H. (2016) Lynx1 limits dendritic spine turnover in the adult visual cortex, J. Neurosci., 36, 9472–9478.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Shulepko, M. A., Lyukmanova, E. N., Kasheverov, I. E., Dolgikh, D. A., Tsetlin, V. I., and Kirpichnikov, M. P. (2011) Bacterial expression of the water-soluble domain of lynx1, an endogenous neuromodulator of human nicotinic receptors, Russ. J. Bioorg. Chem., 37, 609–615.CrossRefGoogle Scholar
  50. 50.
    Lyukmanova, E. N., Shenkarev, Z. O., Shulepko, M. A., Mineev, K. S., D’Hoedt, D., Kasheverov, I. E., Filkin, S. Y., Krivolapova, A. P., Janickova, H., Dolezal, V., Dolgikh, D. A., Arseniev, A. S., Bertrand, D., Tsetlin, V. I., and Kirpichnikov, M. P. (2011) NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1, J. Biol. Chem., 286, 10618–10627.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lyukmanova, E. N., Shulepko, M. A., Buldakova, S. L., Kasheverov, I. E., Shenkarev, Z. O., Reshetnikov, R. V., Filkin, S. Y., Kudryavtsev, D. S., Ojomoko, L. O., Kryukova, E. V., Dolgikh, D. A., Kirpichnikov, M. P., Bregestovski, P. D., and Tsetlin, V. I. (2013) Ws-LYNX1 residues important for interaction with muscle-type and/or neuronal nicotinic receptors, J. Biol. Chem., 288, 15888–15899.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Taly, A., Corringer, P. J., Guedin, D., Lestage, P., and Changeux, J. P. (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system, Nat. Rev. Drug Discov., 8, 733–750.CrossRefPubMedGoogle Scholar
  53. 53.
    Thomsen, M. S., Cinar, B., Jensen, M. M., Lyukmanova, E. N., Shulepko, M. A., Tsetlin, V., Klein, A. B., and Mikkelsen, J. D. (2014) Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated, Brain Struct. Funct., 219, 1923–1934.CrossRefPubMedGoogle Scholar
  54. 54.
    Thomsen, M. S., Arvaniti, M., Jensen, M. M., Shulepko, M. A., Dolgikh, D. A., Pinborg, L. H., Hartig, W., Lyukmanova, E. N., and Mikkelsen, J. D. (2016) Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes, Neurobiol. Aging, 46, 13–21.CrossRefPubMedGoogle Scholar
  55. 55.
    Fu, X. W., Song, P. F., and Spindel, E. R. (2015) Role of Lynx1 and related Ly6 proteins as modulators of cholinergic signaling in normal and neoplastic bronchial epithelium, Int. Immunopharmacol., 29, 93–98.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Dessaud, E., Salaun, D., Gayet, O., Chabbert, M., and De Lapeyriere, O. (2006) Identification of lynx2, a novel member of the ly-6/neurotoxin superfamily, expressed in neuronal subpopulations during mouse development, Mol. Cell Neurosci., 31, 232–242.CrossRefPubMedGoogle Scholar
  57. 57.
    Tekinay, A. B., Nong, Y., Miwa, J. M., Lieberam, I., Ibanez-Tallon, I., Greengard, P., and Heintz, N. (2009) A role for LYNX2 in anxiety-related behavior, Proc. Natl. Acad. Sci. USA, 106, 4477–4482.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wu, M., Puddifoot, C. A., Taylor, P., and Joiner, W. J. (2015) Mechanisms of inhibition and potentiation of α4β2 nicotinic acetylcholine receptors by members of the Ly6 protein family, J. Biol. Chem., 290, 24509–24518.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Darvas, M., Morsch, M., Racz, I., Ahmadi, S., Swandulla, D., and Zimmer, A. (2009) Modulation of the Ca2+ conductance of nicotinic acetylcholine receptors by Lypd6, Eur. Neuropsychopharmacol., 19, 670–681.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Arvaniti, M., Jensen, M. M., Soni, N., Wang, H., Klein, A. B., Thiriet, N., Pinborg, L. H., Muldoon, P. P., Wienecke, J., Imad Damaj, M., Kohlmeier, K. A., Gondre-Lewis, M. C., Mikkelsen, J. D., and Thomsen, M. S. (2016) Functional interaction between Lypd6 and nicotinic acetylcholine receptors, J. Neurochem., 138, 806–820.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhang, Y., Lang, Q., Li, J., Xie, F., Wan, B., and Yu, L. (2010) Identification and characterization of human LYPD6, a new member of the Ly-6 superfamily, Mol. Biol. Rep., 37, 2055–2062.CrossRefPubMedGoogle Scholar
  62. 62.
    Lyukmanova, E. N., Shulepko, M. A., Kudryavtsev, D., Bychkov, M. L., Kulbatskii, D. S., Kasheverov, I. E., Astapova, M. V., Feofanov, A. V., Thomsen, M. S., Mikkelsen, J. D., Shenkarev, Z. O., Tsetlin, V. I., Dolgikh, D. A., and Kirpichnikov M. P. (2016) Human secreted Ly-6/uPAR related protein-1 (SLURP-1) is a selective allosteric antagonist of α7 nicotinic acetylcholine receptor, PLoS One, 11, e0149733.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ni, J., Lang, Q., Bai, M., Zhong, C., Chen, X., Wan, B., and Yu, L. (2009) Cloning and characterization of a human LYPD7, a new member of the Ly-6 superfamily, Mol. Biol. Rep., 36, 697–703.CrossRefPubMedGoogle Scholar
  64. 64.
    Paramonov, A. S., Kulbatskii, D. S., Loktyushov, E. V., Tsarev, A. V., Dolgikh, D. A., Shenkarev, Z. O., Kirpichnikov, M. P., and Lyukmanova, E. N. (2017) Recombinant production and structural study of the human Lypd6 and Lypd6B proteins, Russ. J. Bioorg. Chem., 43, 644–652.Google Scholar
  65. 65.
    Ochoa, V., George, A. A., Nishi, R., and Whiteaker, P. (2016) The prototoxin LYPD6B modulates heteromeric α3β4-containing nicotinic acetylcholine receptors, but not α7 homomers, FASEB J., 30, 809–816.CrossRefGoogle Scholar
  66. 66.
    Reiter, R. E., Gu, Z., Watabe, T., Thomas, G., Szigeti, K., Davis, E., Wahl, M., Nisitani, S., Yamashiro, J., Le Beau, M. M., Loda, M., and Witte, O. N. (1998) Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer, Proc. Natl. Acad. Sci. USA, 95, 1735–1740.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Jensen, M. M., Arvaniti, M., Mikkelsen, J. D., Michalski, D., Pinborg, L. H., Hartig, W., and Thomsen, M. S. (2015) Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer’s disease, Neurobiol. Aging, 36, 1629–1638.CrossRefPubMedGoogle Scholar
  68. 68.
    Ono, H., Hiraoka, N., Lee, Y. S., Woo, S. M., Lee, W. J., Choi, I. J., Saito, A., Yanagihara, K., Kanai, Y., Ohnami, S., Chiwaki, F., Sasaki, H., Sakamoto, H., Yoshida, T., and Saeki, N. (2012) Prostate stem cell antigen, a presumable organ-dependent tumor suppressor gene, is down-regulated in gallbladder carcinogenesis, Genes Chromosomes Cancer, 51, 30–41.CrossRefPubMedGoogle Scholar
  69. 69.
    Moore, M. L., Teitell, M. A., Kim, Y., Watabe, T., Reiter, R. E., Witte, O. N., and Dubey, P. (2008) Deletion of PSCA increases metastasis of TRAMP-induced prostate tumors without altering primary tumor formation, Prostate, 68, 139–151.CrossRefPubMedGoogle Scholar
  70. 70.
    Arredondo, J., Chernyavsky, A. I., and Grando, S. A. (2007) SLURP-1 and -2 in normal, immortalized and malignant oral keratinocytes, Life Sci., 80, 2243–2247.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Arredondo, J., Chernyavsky, A. I., Webber, R. J., and Grando, S. A. (2005) Biological effects of SLURP-1 on human keratinocytes, J. Invest. Dermatol., 125, 1236–1241.CrossRefPubMedGoogle Scholar
  72. 72.
    Chernyavsky, A. I., Kalantari-Dehaghi, M., Phillips, C., Marchenko, S., and Grando, S. A. (2012) Novel cholinergic peptides SLURP-1 and -2 regulate epithelialization of cutaneous and oral wounds, Wound Rep. Regen., 20, 103–113.CrossRefGoogle Scholar
  73. 73.
    Perez, C., and Khachemoune, A. (2016) Mal de Meleda: a focused review, Am. J. Clin. Dermatol., 17, 63–70.CrossRefPubMedGoogle Scholar
  74. 74.
    Allan, C. M., Procaccia, S., Tran, D., Tu, Y., Barnes, R. H., 2nd, Larsson, M., Allan, B. B., Young, L. C., Hong, C., Tontonoz, P., Fong, L. G., Young, S. G., and Beigneux, A. P. (2016) Palmoplantar keratoderma in Slurp2-deficient mice, J. Invest. Dermatol., 136, 436–443.CrossRefPubMedGoogle Scholar
  75. 75.
    Tsuji, H., Okamoto, K., Matsuzaka, Y., Iizuka, H., Tamiya, G., and Inoko, H. (2003) SLURP-2, a novel member of the human Ly-6 superfamily that is up-regulated in psoriasis vulgaris, Genomics, 81, 26–33.CrossRefPubMedGoogle Scholar
  76. 76.
    Pettersson, A., Nylund, G., Khorram-Manesh, A., Nordgren, S., and Delbro, D. S. (2009) Nicotine induced modulation of SLURP-1 expression in human colon cancer cells, Auton. Neurosci., 148, 97–100.CrossRefPubMedGoogle Scholar
  77. 77.
    Lyukmanova, E. N., Shulepko, M. A., Bychkov, M. L., Shenkarev, Z. O., Paramonov, A. S., Chugunov, A. O., Arseniev, A. S., Dolgikh, D. A., and Kirpichnikov, M. P. (2014) Human SLURP-1 and SLURP-2 proteins acting on nicotinic acetylcholine receptors reduce proliferation of human colorectal adenocarcinoma HT-29 cells, Acta Naturae, 6, 60–66.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Moriwaki, Y., Yoshikawa, K., Fukuda, H., Fujii, Y. X., Misawa, H., and Kawashima, K. (2007) Immune system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor ligands, Life Sci., 80, 2365–2368.CrossRefPubMedGoogle Scholar
  79. 79.
    Moriwaki, Y., Watanabe, Y., Shinagawa, T., Kai, M., Miyazawa, M., Okuda, T., Kawashima, K., Yabashi, A., Waguri, S., and Misawa, H. (2009) Primary sensory neuronal expression of SLURP-1, an endogenous nicotinic acetylcholine receptor ligand, Neurosci. Res., 64, 403–412.CrossRefPubMedGoogle Scholar
  80. 80.
    Chernyavsky, A. I., Arredondo, J., Galitovskiy, V., Qian, J., and Grando, S. A. (2010) Upregulation of nuclear factor-kappaB expression by SLURP-1 is mediated by alpha7-nicotinic acetylcholine receptor and involves both ionic events and activation of protein kinases, Am. J. Physiol. Cell Physiol., 299, 903–911.CrossRefGoogle Scholar
  81. 81.
    Arredondo, J., Chernyavsky, A. I., Jolkovsky, D. L., Webber, R. J., and Grando, S. A. (2006) SLURP-2: a novel cholinergic signaling peptide in human mucocutaneous epithelium, J. Cell. Physiol., 208, 238–245.CrossRefPubMedGoogle Scholar
  82. 82.
    Lyukmanova, E. N., Shulepko, M. A., Shenkarev, Z. O., Bychkov, M. L., Paramonov, A. S., Chugunov, A. O., Kulbatskii, D. S., Arvaniti, M., Dolejsi, E., Schaer, T., Arseniev, A. S., Efremov, R. G., Thomsen, M. S., Dolezal, V., Bertrand, D., Dolgikh, D. A., and Kirpichnikov, M. P. (2016) Secreted isoform of human Lynx1 (SLURP-2): spatial structure and pharmacology of interactions with different types of acetylcholine receptors, Sci. Rep., 6, 30698.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Cachelin, A. B., and Rust, G. (1994) Unusual pharmacology of (+)-tubocurarine with rat neuronal nicotinic acetylcholine receptors containing beta 4 subunits, Mol. Pharmacol., 46, 1168–1174.PubMedGoogle Scholar
  84. 84.
    Shulepko, M. A., Lyukmanova, E. N., Shenkarev, Z. O., Dubovskii, P. V., Astapova, M. V., Feofanov, A. V., Arseniev, A. S., Utkin, Y. N., Kirpichnikov, M. P., and Dolgikh, D. A. (2017) Towards universal approach for bacterial production of three-finger Ly6/uPAR proteins: case study of cytotoxin I from cobra N. oxiana, Protein Expr. Purif., 130, 13–20.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. A. Vasilyeva
    • 1
    • 2
    • 3
  • E. V. Loktyushov
    • 1
    • 2
  • M. L. Bychkov
    • 2
  • Z. O. Shenkarev
    • 2
  • E. N. Lyukmanova
    • 1
    • 2
    Email author
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Shemyakin−Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations