Biochemistry (Moscow)

, Volume 82, Issue 12, pp 1538–1548 | Cite as

Metagenomics of bolidophyceae in plankton and ice of the White Sea

  • T. A. Belevich
  • L. V. Ilyash
  • I. A. Milyutina
  • M. D. Logacheva
  • A. V. TroitskyEmail author
Regular Article


The molecular diversity of poorly studied algae of Bolidophyceae class was first estimated by Illumina sequencing of V4 region of 18S rRNA gene in ice, under-ice water and summer water of the subarctic White Sea. We used two clustering thresholds–93 and 97%–and revealed 31 phylotypes of Bolidophyceae. Triparma pacifica and Т. strigata were identified to species level. The association of individual phylotypes to certain biotopes (ice or plankton) and stages of seasonal succession (under ice or summer plankton) has been established. Some phylotypes are found in different biotopes and over a wide temperature range. Due to changing their genetic composition, Bolidophyceae are a constant component of the photoautotrophic plankton and ice communities.


metagenomic analysis picophytoplankton White Sea Bolidophyceae Triparma pacifica Triparma strigata 



Bayesian analysis


maximum likelihood (method)


operational taxonomic unit




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guillou, L., Chretiennot-Dinet, M. J., Medlin, L. K., Claustre, H., Loiseaux de Goer, S., and Vaulot, D. (1999) Diversity and abundance of Bolidophyceae (Heterokonta) in two oceanic regions, Appl. Environ. Microbiol., 65, 4528–4536.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Daugbjerg, N., and Guillou, L. (2001) Phylogenetic analyses of Bolidophyceae (Heterokontophyta) using rbcL gene sequences support their sister group relationship to diatoms, Phycologia, 40, 153–161.CrossRefGoogle Scholar
  3. 3.
    Ichinomiya, M., Yoshikawa, S., Kamiya, M., Ohki, K., Takaichi, S., and Kuwata, A. (2011) Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/ Stramenopiles) from the Oyashio region, Western North Pacific, J. Phycol., 47, 144–151.PubMedGoogle Scholar
  4. 4.
    Booth, B. C., and Marchant, H. J. (1987) Parmales, a new order of marine chrysophytes, with descriptions of three new genera and seven new species, J. Phycol., 23, 245–260.Google Scholar
  5. 5.
    Ichinomiya, M., Lopes dos Santos, A., Gourvil, P., Yoshikawa, S., Kamiya, M., Ohki, K., Audic, S., De Vargas, C., Noel, M.-H., Vaulot, D., and Kuwata, A. (2016) Diversity and oceanic distribution of the Parmales (Bolidophyceae), a picoplanktonic group closely related to diatoms, ISME J., 10, 2419–2434.PubMedGoogle Scholar
  6. 6.
    Taylor, J. D., and Cunliffe, M. (2014) High-throughput sequencing reveals neustonic and planktonic microbial eukaryote diversity in coastal waters, J. Phycol., 50, 960–965.CrossRefPubMedGoogle Scholar
  7. 7.
    Kilias, E. S., Nothig, E.-M., Wolf, C., and Metfies, K. (2014) Picoeukaryote plankton composition off West Spitsbergen at the entrance to the Arctic Ocean, J. Eukaryot. Microbiol., 61, 569–579.CrossRefPubMedGoogle Scholar
  8. 8.
    Luria, C., Ducklow, H., and Amaral-Zettler, L. (2014) Marine bacterial, archaeal and eukaryotic diversity and community structure on the continental shelf of the Western Antarctic Peninsula, Aquat. Microb. Ecol., 73, 107–121.Google Scholar
  9. 9.
    Luan, Q., Sun, J., and Wang, J. (2016) Large-scale distribution of coccolithophores and Parmales in the surface waters of the Atlantic Ocean, J. Marine Biol. Assoc. UK, 1–13.Google Scholar
  10. 10.
    Hinz, D. J., Poulton, A. J., Nielsdottir, M. C., Steigenberger, S., Korb, R. E., Achterberg, E. P., and Bibby, T. S. (2012) Comparative seasonal biogeography of mineralizing nannoplankton in the Scotia Sea: Emiliania huxleyi, Fragilariopsis spp. and Tetraparma pelagica, Deep-Sea Res. Part II, 59-60, 57–66.CrossRefGoogle Scholar
  11. 11.
    Piwosz, K., Wiktor, J. M., Niemi, A., Tatarek, A., and Michel, C. (2013) Mesoscale distribution and functional diversity of picoeukaryotes in the first-year sea ice of the Canadian Arctic, ISME J., 7, 1461–1471.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    IPCC, Intergovernmental Panel on climate change. Working group I (2007) Climate change 2007: The physical science basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., eds.) Cambridge University Press, N. Y., p.996.Google Scholar
  13. 13.
    Lovejoy, C., Vincent, W. F., Bonilla, S., Roy, S., Martineau, M. J., Terrado, R., Potvin, M., Massana, R., and Pedros-Alio, C. (2007) Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas, J. Phycol., 43, 78–89.Google Scholar
  14. 14.
    Berger, V., Dahle, S., Galaktionov, K., Kosobokova, X., Naumov, A., Rat’kova, T., Savinov, V., and Savinova, T. (2001) White Sea. Ecology and Environment, St. Petersburg-Tromso, p.157.Google Scholar
  15. 15.
    Belevich, T. A., Ilyash, L. V., Milyutina, I. A., Logacheva, M. D., Goryunov, D. V., and Troitsky, A. V. (2015) Metagenomic analyses of White Sea picoalgae: first data, Biochemistry (Moscow), 80, 1514–1521.CrossRefGoogle Scholar
  16. 16.
    Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F. (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537–7541.PubMedGoogle Scholar
  17. 17.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011) UCHIME improves sensitivity and speed of chimera detection, Bioinformatics, 27, 2194–2200.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Katoh, K., and Standley, D. M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 30, 772–780.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glockner, F. O. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 41, D590–D596.CrossRefPubMedGoogle Scholar
  20. 20.
    Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 61, 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., and Ronquist, F. (2004) Parallel metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference, Bioinformatics, 20, 407–415.CrossRefPubMedGoogle Scholar
  22. 22.
    Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 30, 1312–1313.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Booth, B. C., Lewin, J., and Norris, R. E. (1980) Siliceous nanoplankton. Newly discovered cysts from the Gulf of Alaska, Mar. Biol., 58, 205–209.CrossRefGoogle Scholar
  24. 24.
    Marchant, H., and Nash, G. (1986) Electron microscopy of gut contents and faeces of Euphausia superba Dana, Mem. Natl. Inst. Polar Res., 40, 167–177.Google Scholar
  25. 25.
    Urban, J., McKenzie, C., and Deibel, D. (1992) Nannoplankton found in fecal pellets of macrozooplankton in coastal Newfoundland waters, Bot. Mar., 36, 267–281.Google Scholar
  26. 26.
    Konno, S., Ohira, R., Harada, N., and Jordan, R. W. (2007) Six new taxa of subarctic Parmales (Chrysophyceae), J. Nannoplankt. Res., 29, 108–128.Google Scholar
  27. 27.
    Marchant, H. J., Watanabe, K., and Kawachi, M. (1996) Marine snow in Antarctic coastal waters, Proc. NIPR Symp. Polar Biol., 9, 75–83.Google Scholar
  28. 28.
    Vaulot, D., Romari, K., and Not, F. (2002) Are autotrophs less diverse than heterotrophs in marine picoplankton? Trends Microbiol., 10, 266–267.CrossRefPubMedGoogle Scholar
  29. 29.
    Not, F., Massana, R., Latasa, M., Marie, D., Colson, C., Eikrem, W., Pedros-Alio, C., Vaulot, D., and Simon, N. (2005) Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas, Limnol. Oceanogr., 50, 1677–1686.CrossRefGoogle Scholar
  30. 30.
    Lovejoy, C., and Potvin, M. (2011) Microbial eukaryotic distribution in a dynamic Beaufort Sea and the Arctic Ocean, J. Plankton Res., 33, 431–444.CrossRefGoogle Scholar
  31. 31.
    Ichinomiya, M., and Kuwata, A. (2015) Seasonal variation in abundance and species composition of the Parmales community in the Oyashio region, Western North Pacific, Aquat. Microb. Ecol., 75, 207–223.CrossRefGoogle Scholar
  32. 32.
    Tanimoto, M., Aizawa, C., and Jordan, R. W. (2003) Assemblages of living microplankton from the subarctic North Pacific and Bering Sea during July-August 1999, Courier Forschungsinstitut Senckenberg, 244, 83–103.Google Scholar
  33. 33.
    Ichinomiya, M., Nakamachi, M., Shimizu, Y., and Kuwata, A. (2013) Growth characteristics and vertical distribution of Triparma laevis (Parmales) during summer in the Oyashio region, Western North Pacific, Aquat. Microb. Ecol., 68, 107–116.CrossRefGoogle Scholar
  34. 34.
    Majaneva, M., Rintala, J. M., Piisila, M., Fewer, D. P., and Blomster, J. (2012) Comparison of wintertime eukaryotic community from sea ice and open water in the Baltic Sea, based on sequencing of the 18S rRNA gene, Polar Biol., 35, 875–889.Google Scholar
  35. 35.
    Marie, D., Shi, X., Rigaut-Jalabert, F., and Vaulot, D. (2010) Diversity of small photosynthetic eukaryotes in the English Channel from samples sorted by flow cytometry, FEMS Microbiol. Ecol., 72, 165–178.CrossRefPubMedGoogle Scholar
  36. 36.
    Marquardt, M., Vader, A., Stubner, E. I., Reigstad, M., and Gabrielsen, T. M. (2016) Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, West Spitsbergen), Appl. Environ. Microbiol., 6, 1868–1880.CrossRefGoogle Scholar
  37. 37.
    Eddie, B., Juhl, A., Krembs, C., Baysinger, C., and Neuer, S. (2010) Effect of environmental variables on eukaryotic microbial community structure of land-fast Arctic Sea ice, Environ. Microbiol., 12, 797–809.CrossRefPubMedGoogle Scholar
  38. 38.
    Bachy, C., Lopez-Garcia, P., Vereshchaka, A., and Moreira, D. (2011) Diversity and vertical distribution of microbial eukaryotes in the snow, sea ice and seawater near the north pole at the end of the polar night, Front. Microbiol., 2,106.PubMedGoogle Scholar
  39. 39.
    Majaneva, M., Rintala, J. M., Piisila, M., Fewer, D. P., and Blomster, J. (2012) Comparison of wintertime eukaryotic community from sea ice and open water in the Baltic Sea, based on sequencing of the 18S rRNA gene, Polar Biol., 35, 875–889.Google Scholar
  40. 40.
    Comeau, A. M., Philippe, B., Thaler, M., Gosselin, M., Poulin, M., and Lovejoy, C. (2013) Protists in Arctic drift and land-fast sea ice, J. Phycol., 49, 229–240.CrossRefPubMedGoogle Scholar
  41. 41.
    Stecher, A., Neuhaus, S., Lange, B., Frickenhaus, S., Beszteri, B., Kroth, P. G., and Valentin, K. (2016) rRNA and rDNA based assessment of sea ice protist biodiversity from the central Arctic Ocean, Eur. J. Phycol., doi: 10.1080/09670262.2015.1077395.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. A. Belevich
    • 1
  • L. V. Ilyash
    • 1
  • I. A. Milyutina
    • 2
  • M. D. Logacheva
    • 2
    • 3
  • A. V. Troitsky
    • 2
    Email author
  1. 1.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia
  2. 2.Lomonosov Moscow State UniversityBelozersky Institute of Physico-Chemical BiologyMoscowRussia
  3. 3.Kazan Federal University, Institute of Fundamental Biology and MedicineLaboratory of Extreme BiologyKazanRussia

Personalised recommendations