Skip to main content
Log in

Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Recombination of the isolated, fully reduced bd-type quinol oxidase from Escherichia coli with carbon monoxide was studied by pulsed absorption spectrophotometry with microsecond time resolution. Analysis of the kinetic phases of recombination was carried out using the global analysis of multiwavelength kinetic data (“Global fitting”). It was found that the unresolved photodissociation of CO is followed by a stepwise (with four phases) recombination with characteristic times (τ) of about 20 μs, 250 μs, 1.1 ms, and 24 ms. The 20-μs phase most likely reflects bimolecular recombination of CO with heme d. Two subsequent kinetic transitions, with τ ~ 250 μs and 1.1 ms, were resolved for the first time. It is assumed that the 250-μs phase is heterogeneous and includes two different processes: recombination of CO with ~7% of heme b595 and transition of heme d from a pentacoordinate to a transient hexacoordinate state in this enzyme population. The 24-ms transition probably reflects a return of heme d to the pentacoordinate state in the same protein fraction. The 1.1-ms phase can be explained by recombination of CO with ~15% of heme b558. Possible models of interaction of CO with different heme centers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ches:

2-(cyclohexylamino)ethanesulfonic acid

Hepes:

N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid

τ:

characteristic time of recombination reaction, reciprocal of rate constant (t1/e)

References

  1. Poole, R. K., and Cook, G. M. (2000) Redundancy of aer-obic respiratory chains in bacteria? Routes, reasons and regulation, Adv. Microb. Physiol., 43, 165–224.

    Article  CAS  PubMed  Google Scholar 

  2. Gavrikova, E. V., Grivennikova, V. G., Borisov, V. B., Cecchini, G., and Vinogradov, A. D. (2009) Assembly of a chimeric respiratory chain from bovine heart submitochon-drial particles and cytochrome bd terminal oxidase of Escherichia coli, FEBS Lett., 583, 1287–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., and Verkhovsky, M. I. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800–13809.

    Article  CAS  PubMed  Google Scholar 

  4. Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., Gennis, R. B., and Verkhovsky, M. I. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657–3662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514–28519.

    Article  CAS  PubMed  Google Scholar 

  6. Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmem-brane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site, Biochemistry, 47, 7907–7914.

    Article  CAS  PubMed  Google Scholar 

  7. Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikstrom, M. (1991) Properties of the two terminal oxidas-es of Escherichia coli, Biochemistry, 30, 3936–3942.

    Article  CAS  PubMed  Google Scholar 

  8. Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., Gennis, R. B., and Verkhovsky, M. I. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320–17324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borisov, V. B., and Verkhovsky, M. I. (2015) Oxygen as acceptor, EcoSal Plus, 6, doi: 10.1128/ecosalplus.ESP-0012-2015.

  10. Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecu-lar machines operating in opposite directions, Front. Biosci. (Landmark Ed.), 22, 1379–1426.

    Article  Google Scholar 

  11. Siletsky, S. A. (2013) Steps of the coupled charge transloca-tion in the catalytic cycle of cytochrome c oxidase, Front. Biosci. (Landmark Ed.), 18, 36–57.

    Article  CAS  Google Scholar 

  12. Siletsky, S. A., and Konstantinov, A. A. (2012) Cytochrome c oxidase: charge translocation coupled to single-electron partial steps of the catalytic cycle, Biochim. Biophys. Acta, 1817, 476–488.

    Article  CAS  PubMed  Google Scholar 

  13. Siletskiy, S., Soulimane, T., Azarkina, N., Vygodina, T. V., Buse, G., Kaulen, A., and Konstantinov, A. (1999) Time-resolved generation of a membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus. Evidence for reduction-induced opening of the binuclear center, FEBS Lett., 457, 98–102.

    Article  CAS  PubMed  Google Scholar 

  14. Siletsky, S. A., Belevich, I., Wikstrom, M., Soulimane, T., and Verkhovsky, M. I. (2009) Time-resolved OH→EH transition of the aberrant ba3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1787, 201–205.

    Article  CAS  PubMed  Google Scholar 

  15. Siletsky, S., Kaulen, A. D., and Konstantinov, A. A. (1999) Resolution of electrogenic steps couples to conversion of cytochrome c oxidase from the peroxy to the ferryl-oxo state, Biochemistry, 38, 4853–4861.

    Article  CAS  PubMed  Google Scholar 

  16. Borisov, V. B. (1996) Cytochrome bd: structure and properties, Biochemistry (Moscow), 61, 565–574.

    Google Scholar 

  17. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reduc-tases, Biochim. Biophys. Acta, 1807, 1398–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giuffre, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622–629.

    Article  CAS  PubMed  Google Scholar 

  19. Giuffre, A., Borisov, V. B., Arese, M., Sarti, P., and Forte, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178–1187.

    Article  CAS  PubMed  Google Scholar 

  20. Forte, E., Borisov, V. B., Vicente, J. B., and Giuffre, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171–234.

    Article  PubMed  Google Scholar 

  21. Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., Poole, R. K., Vicente, J. B., Sarti, P., and Giuffre, A. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., and Giuffre, A. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201–204.

    Article  CAS  PubMed  Google Scholar 

  23. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2006) Nitric oxide reacts with the fer-ryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823–4826.

    Article  CAS  PubMed  Google Scholar 

  24. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97–102.

    Article  CAS  PubMed  Google Scholar 

  25. Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffre, A., and Sarti, P. (2007) Cytochrome bd, a key oxi-dase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265–269.

    PubMed  Google Scholar 

  26. Mason, M. G., Shepherd, M., Nicholls, P., Dobbin, P. S., Dodsworth, K. S., Poole, R. K., and Cooper, C. E. (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nat. Chem. Biol., 5, 94–96.

    Article  CAS  PubMed  Google Scholar 

  27. Borisov, V. B., Forte, E., Giuffre, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of ter-minal oxidases: different reaction pathways and end-prod-ucts, J. Inorg. Biochem., 103, 1185–1187.

    Article  CAS  PubMed  Google Scholar 

  28. Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), 75, 428–436.

    Article  CAS  Google Scholar 

  29. Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress, FEBS Lett., 587, 2214–2218.

    Article  CAS  PubMed  Google Scholar 

  30. Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, MBio, 4, e01006–01013.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Al-Attar, S., Yu, Y., Pinkse, M., Hoeser, J., Friedrich, T., Bald, D., and De Vries, S. (2016) Cytochrome bd displays significant quinol peroxidase activity, Sci. Rep., 6, 27631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffre, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182–188.

    Article  CAS  PubMed  Google Scholar 

  33. Borisov, V. B., Forte, E., Siletsky, S. A., Arese, M., Davletshin, A. I., Sarti, P., and Giuffre, A. (2015) Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents, Biochemistry (Moscow), 80, 565–575.

    Article  CAS  Google Scholar 

  34. Poole, R. K., Kumar, C., Salmon, I., and Chance, B. (1983) The 650 nm chromophore in Escherichia coli is an “Oxy-” or oxygenated compound, not the oxidized form of cytochrome oxidase d: a hypothesis, J. Gen. Microbiol., 129, 1335–1344.

    CAS  PubMed  Google Scholar 

  35. Kahlow, M. A., Loehr, T. M., Zuberi, T. M., and Gennis, R. B. (1993) The oxygenated complex of cytochrome d terminal oxidase: direct evidence for Fe-O2 coordination in a chlorin-containing enzyme by resonance Raman spec-troscopy, J. Am. Chem. Soc., 115, 5845–5846.

    Article  CAS  Google Scholar 

  36. Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437–443.

    Google Scholar 

  37. Borisov, V. B., Forte, E., Sarti, P., and Giuffre, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503–509.

    Article  CAS  PubMed  Google Scholar 

  38. Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: stability and photola-bility, FEBS Lett., 579, 4567–4570.

    Article  CAS  PubMed  Google Scholar 

  39. Belevich, I., Borisov, V. B., Bloch, D. A., Konstantinov, A. A., and Verkhovsky, M. I. (2007) Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, 46, 11177–11184.

    Article  CAS  PubMed  Google Scholar 

  40. Safarian, S., Rajendran, C., Muller, H., Preu, J., Langer, J. D., Ovchinnikov, S., Hirose, T., Kusumoto, T., Sakamoto, J., and Michel, H. (2016) Structure of a bd oxidase indi-cates similar mechanisms for membrane-integrated oxygen reductases, Science, 352, 583–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740–750.

    Article  CAS  PubMed  Google Scholar 

  42. Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and mag-neto-optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087–2094.

    Article  CAS  PubMed  Google Scholar 

  43. Spinner, F., Cheesman, M. R., Thomson, A. J., Kaysser, T., Gennis, R. B., Peng, Q., and Peterson, J. (1995) The haem b558 component of the cytochrome bd quinol oxidase com-plex from Escherichia coli has histidine-methionine axial ligation, Biochem. J., 308, 641–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fang, H., Lin, R.-J., and Gennis, R. B. (1989) Location of heme axial ligands in the cytochrome d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis, J. Biol. Chem., 264, 8026–8032.

    CAS  PubMed  Google Scholar 

  45. Sun, J., Kahlow, M. A., Kaysser, T. M., Osborne, J. P., Hill, J. J., Rohlfs, R. J., Hille, R., Gennis, R. B., and Loehr, T. M. (1996) Resonance Raman spectroscopic identification of a histidine ligand of b595 and the nature of the ligation of chlorin d in the fully reduced Escherichia coli cytochrome bd oxidase, Biochemistry, 35, 2403–2412.

    Article  CAS  PubMed  Google Scholar 

  46. Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., Gennis, R. B., and Konstantinov, A. A. (2008) Strong excitonic interactions in the oxygen-reduc-ing site of bd-type oxidase: the Fe-to-Fe distance between hemes d and b595 is 10 Å, Biochemistry, 47, 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  47. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, T., Yaono, R., and Yoshikawa, S. (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å, Science, 269, 1069–1074.

    Article  CAS  PubMed  Google Scholar 

  48. Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995) Structure at 2.8 Å resolution of cytochrome c oxi-dase from Paracoccus denitrificans, Nature, 376, 660–669.

    Article  CAS  PubMed  Google Scholar 

  49. Hill, J. J., Alben, J. O., and Gennis, R. B. (1993) Spectroscopic evidence for a heme–heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli, Proc. Natl. Acad. Sci. USA, 90, 5863–5867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsubaki, M., Hori, H., Mogi, T., and Anraku, Y. (1995) Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli, J. Biol. Chem., 270, 28565–28569.

    Article  CAS  PubMed  Google Scholar 

  51. Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231–240.

    Google Scholar 

  52. Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975–982.

    CAS  PubMed  Google Scholar 

  53. Vos, M. H., Borisov, V. B., Liebl, U., Martin, J. L., and Konstantinov, A. A. (2000) Femtosecond resolution of lig-and−heme interactions in the high-affinity quinol oxidase bd: a di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554–1559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evi-dence that only a small fraction of heme b595 reacts with CO, J. Biol. Chem., 276, 22095–22099.

    Article  CAS  PubMed  Google Scholar 

  55. Borisov, V. B., Liebl, U., Rappaport, F., Martin, J. L., Zhang, J., Gennis, R. B., Konstantinov, A. A., and Vos, M. H. (2002) Interactions between heme d and heme b595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654–1662.

    Article  CAS  PubMed  Google Scholar 

  56. Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14–22.

    Article  CAS  Google Scholar 

  57. Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme–heme and heme–ligand inter-actions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65–67.

    Article  CAS  PubMed  Google Scholar 

  59. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617.

  60. D’mello, R., Hill, S., and Poole, R. K. (1996) The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two-oxygen-binding haems: implications for regulation of activity in vivo by oxy-gen inhibition, Microbiology, 142, 755–763.

    Article  PubMed  Google Scholar 

  61. Rothery, R. A., Houston, A. M., and Ingledew, W. J. (1987) The respiratory chain of anaerobically grown Escherichia coli: reactions with nitrite and oxygen, J. Gen. Microbiol., 133, 3247–3255.

    CAS  PubMed  Google Scholar 

  62. Siletsky, S. A., Belevich, I., Soulimane, T., Verkhovsky, M. I., and Wikstrom, M. (2013) The fifth electron in the fully reduced caa3 from Thermus thermophilus is competent in proton pumping, Biochim. Biophys. Acta, 1827, 1–9.

    Article  CAS  PubMed  Google Scholar 

  63. Nicholls, P. (1978) A new carbon monoxide-induced com-plex of cytochrome c oxidase, Biochem. J., 175, 1147–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Siletsky, S. A., Han, D., Brand, S., Morgan, J. E., Fabian, M., Geren, L., Millett, F., Durham, B., Konstantinov, A. A., and Gennis, R. B. (2006) Single-electron photoreduc-tion of the PM intermediate of cytochrome c oxidase, Biochim. Biophys. Acta, 1757, 1122–1132.

    Article  CAS  PubMed  Google Scholar 

  65. Miller, M. J., and Gennis, R. B. (1986) Purification and reconstitution of the cytochrome d terminal oxidase com-plex from Escherichia coli, Methods Enzymol., 126, 87–94.

    Article  CAS  PubMed  Google Scholar 

  66. Bloch, D. A., Borisov, V. B., Mogi, T., and Verkhovsky, M. I. (2009) Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli, Biochim. Biophys. Acta, 1787, 1246–1253.

    Article  CAS  PubMed  Google Scholar 

  67. Siletsky, S. A., Pawate, A. S., Weiss, K., Gennis, R. B., and Konstantinov, A. A. (2004) Transmembrane charge separa-tion during the ferryl-oxo → oxidized transition in a non-pumping mutant of cytochrome c oxidase, J. Biol. Chem., 279, 52558–52565.

    Article  CAS  PubMed  Google Scholar 

  68. Siletsky, S. A., Zhu, J., Gennis, R. B., and Konstantinov, A. A. (2010) Partial steps of charge translocation in the non-pumping N139L mutant of Rhodobacter sphaeroides cytochrome c oxidase with a blocked D-channel, Biochemistry, 49, 3060–3073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Azarkina, N., Siletsky, S., Borisov, V., Von Wachenfeldt, C., Hederstedt, L., and Konstantinov, A. A. (1999) A cytochrome bb′-type quinol oxidase in Bacillus subtilis strain 168, J. Biol. Chem., 274, 32810–32817.

    Article  CAS  PubMed  Google Scholar 

  70. Muntyan, M. S., Bloch, D. A., Drachev, L. A., and Skulachev, V. P. (1993) Kinetics of CO binding to putative Na+-motive oxidases of the o-type from Bacillus FTU and of the d-type from Escherichia coli, FEBS Lett., 327, 347–350.

    Article  CAS  PubMed  Google Scholar 

  71. Hill, B. C., Hill, J. J., and Gennis, R. B. (1994) The room temperature reaction of carbon monoxide and oxygen with the cytochrome bd quinol oxidase from Escherichia coli, Biochemistry, 33, 15110–15115.

    Article  CAS  PubMed  Google Scholar 

  72. Junemann, S., Rich, P. R., and Wrigglesworth, J. M. (1995) CO flash photolysis of cytochrome bd from Azotobacter vinelandii, Biochem. Soc. Trans., 23, 157S.

    Article  CAS  PubMed  Google Scholar 

  73. Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin haems in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186.

  74. Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Verkhovsky, M. I. (2011) Time-resolved single-turnover of caa3 oxidase from Thermus thermophilus. Fifth electron of the fully reduced enzyme converts OH into EH state, Biochim. Biophys. Acta, 1807, 1162–1169.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Borisov.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 11, pp. 1718–1731.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siletsky, S.A., Dyuba, A.V., Elkina, D.A. et al. Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide. Biochemistry Moscow 82, 1354–1366 (2017). https://doi.org/10.1134/S000629791711013X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791711013X

Keywords

Navigation