Distinct mechanisms of phenotypic effects of inactivation and prionization of Swi1 protein in Saccharomyces cerevisiae

Abstract

Prions are proteins that under the same conditions can exist in two or more conformations, and at least one of the conformations has infectious properties. The prionization of a protein is typically accompanied by its functional inactivation due to sequestration of monomers by the prion aggregates. The most of prions has been identified in the yeast Saccharomyces cerevisiae. One of them is [SWI +], a prion isoform of the Swi1 protein, which is a component of the evolutionarily conserved chromatin remodeling complex SWI/SNF. Earlier, it was shown that the prionization of [SWI +] induces a nonsense suppression, which leads to weak growth of the [SWI +] strains containing mutant variants of the SUP35 gene and the nonsense allele ade1-14 UGA on selective medium without adenine. This effect occurs because of [SWI +] induction that causes a decrease in the amount of the SUP45 mRNA. Strains carrying the SWI1 deletion exhibit significantly higher suppression of the ade1-14 UGA nonsense mutation than the [SWI +] strains. In the present study, we identified genes whose expression is altered in the background of the SWI1 deletion using RNA sequencing. We found that the ade1-14 UGA suppression in the swi1Δ strains is caused by an increase in the expression of this mutant allele of the ADE1 gene. At the same time, the SUP45 expression level in the swi1Δ strains does not significantly differ from the expression level of this gene in the [swi ] strains. Thus, we have shown that the phenotypic effects of Swi1 prionization and deletion are mediated by different molecular mechanisms. Based on these data, we have concluded that the prionization of proteins is not only unequal to their inactivation, but also can lead to the acquisition of novel phenotypic effects and functions.

This is a preview of subscription content, log in to check access.

Abbreviations

eRF:

eukaryotic release factor

qPCR:

real-time quantitative polymerase chain reaction

RNA-Seq:

RNA sequencing

References

  1. 1.

    Tang, L., Nogales, E., and Ciferri, C. (2010) Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription, Prog. Biophys. Mol. Biol., 102, 122–128.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dechassa, M. L., Zhang, B., Horowitz-Scherer, R., Persinger, J., Woodcock, C. L., Peterson, C. L., and Bartholomew, B. (2008) Architecture of the SWI/SNF–nucleosome complex, Mol. Cell Biol., 28, 6010–6021.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Neigeborn, L., and Carlson, M. (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae, Genetics, 108, 845–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Peterson, C. L., and Herskowitz, I. (1992) Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encodea global activator of transcription, Cell, 68, 573–583.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Laurent, B. C., Yang, X., and Carlson, M. (1992) An essential Saccharomyces cerevisiae gene homologous to SNF2 encodes a helicase-related protein in a new family, Mol. Cell Biol., 12, 1893–1902.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Eisen, J. A., Sweder, K. S., and Hanawalt, P. C. (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions, Nucleic Acids Res., 23, 2715–2723.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Hargreaves, D. C., and Crabtree, G. R. (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms, Cell Res., 21, 396–420.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Prochasson, P., Neely, K. E., Hassan, A. H., Li, B., and Workman, J. L. (2003) Targeting activity is required for SWI/SNF function in vivo and is accomplished through two partially redundant activator-interaction domains, Mol. Cell, 12, 983–990.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Perez-Martin, J., and Johnson, A. D. (1998) The C-terminal domain of Sin1 interacts with the SWI–SNF complex in yeast, Mol. Cell Biol., 18, 4157–4164.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Breeden, L., and Nasmyth, K. (1987) Cell cycle control of the yeast HOgene: cis- and trans-acting regulators, Cell, 48, 389–397.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Hirschhorn, J. N., Brown, S. A., Clark, C. D., and Winston, F. (1992) Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure, Genes Dev., 6, 2288–2298.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Haber, J. E., and Garvik, B. (1977) A new gene affecting the efficiency of mating-type interconversions in homothallic strains of Saccharomyces cerevisiae, Genetics, 87, 33–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Taguchi, A. K., and Young, E. T. (1987) The cloning and mapping of ADR6, a gene required for sporulation and for expression of the alcohol dehydrogenase II isozyme from Saccharomyces cerevisiae, Genetics, 116, 531–540.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Du, Z., Park, K. K.-W., Yu, H., Fan, Q., and Li, L. (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae, Nat. Genet., 40, 460–465.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Alberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins, Cell, 137, 146–158.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Nizhnikov, A. A., Antonets, K. S., Bondarev, S. A., Inge-Vechtomov, S. G., and Derkatch, I. L. (2016) Prions, amyloids, and RNA: pieces of a puzzle, Prion, 10, 182–206.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Wickner, R. B., Edskes, H. K., Shewmaker, F., Nakayashiki, T., Engel, A., McCann, L., and Kryndushkin, D. (2007) Yeast prions: evolution of the prion concept, Prion, 1, 94–100.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Kondrashkina, A. M., Antonets, K. S., Galkin, A. P., and Nizhnikov, A. A. (2014) Prion-like determinant [NSI+] decreases expression of the SUP45 gene in Saccharomyces cerevisiae, Mol. Biol., 48, 688–693.

    CAS  Article  Google Scholar 

  19. 19.

    Nizhnikov, A. A., Ryzhova, T. A., Volkov, K. V., Zadorsky, S. P., Sopova, J. V., Inge-Vechtomov, S. G., and Galkin, A. P. (2016) Interaction of prions causes heritable traits in Saccharomyces cerevisiae, PLoS Genet., 12, e1006504.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zhouravleva, G., Frolova, L., Le Goff, X., Le Guellec, R., Inge-Vechtomov, S., Kisselev, L., and Philippe, M. (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3, EMBO J., 14, 4065–4072.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Stansfield, I., Jones, K. M., Ter-Avanesyan, M. D., and Tuite, M. F. (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae, EMBO J., 14, 4365–4373.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Saifitdinova, A. F., Nizhnikov, A. A., Lada, A. G., Rubel, A. A., Magomedova, Z. M., Ignatova, V. V., Inge-Vechtomov, S. G., and Galkin, A. P. (2010) [NSI+]: a novel non-Mendelian nonsense suppressor determinant in Saccharomyces cerevisiae, Curr. Genet., 56, 467–478.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Nizhnikov, A. A., Magomedova, Z. M., Rubel, A. A., Kondrashkina, A. M., Inge-Vechtomov, S. G., and Galkin, A. P. (2012) [NSI+] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes, Curr. Genet., 58, 35–47.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Nizhnikov, A. A., Antonets, K. S., Inge-Vechtomov, S. G., and Derkatch, I. L. (2014) Modulation of efficiency of translation termination in Saccharomyces cerevisiae, Prion, 8, 247–260.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kaiser, C., Michaelis, S., and Mitchell, A. (1994) Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  26. 26.

    Zakharov, I. A., Kozhin, S. A., Kozhina, T. N., and Fedorova, I. V. (1984) Collected Methods in Genetics of the Yeast Saccharomyces [in Russian], Nauka, Leningrad.

    Google Scholar 

  27. 27.

    Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method, Methods, 25, 402–408.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Starostina, E., Tamazian, G., Dobrynin, P., O’Brien, S., and Komissarov, A. (2015) Cookiecutter: a tool for kmer-based read filtering and extraction, BioRxiv, 024679.

    Google Scholar 

  29. 29.

    Bolger, A. M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 30, 2114–2120.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner, Bioinformatics, 29, 15–21.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Anders, S., Pyl, P. T., and Huber, W. (2015) HTSeq-A Python framework to work with high-throughput sequencing data, Bioinformatics, 31, 166–169.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kolde, R. (2012) Package “pheatmap”, Bioconductor, 1–6.

    Google Scholar 

  34. 34.

    Stern, M., Jensen, R., and Herskowitz, I. (1984) Five SWI genes are required for expression of the HO gene in yeast, J. Mol. Biol., 178, 853–868.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Krings, G., and Bastia, D. (2004) swi1- and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe, Proc. Natl. Acad. Sci. USA, 101, 14085–14090.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Sanz, A. B., Garcia, R., Rodriguez-Pena, J. M., Diez-Muniz, S., Nombela, C., Peterson, C. L., and Arroyo, J. (2012) Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway, Mol. Biol. Cell, 23, 2805–2817.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Adkins, M. W., Williams, S. K., Linger, J., and Tyler, J. K. (2007) Chromatin disassembly from the PHO5 promoter is essential for the recruitment of the general transcription machinery and coactivators, Mol. Cell Biol., 27, 6372–6382.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Erkina, T. Y., Tschetter, P. A., and Erkine, A. M. (2008) Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes, Mol. Cell Biol., 28, 1207–1217.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Shivaswamy, S., and Iyer, V. R. (2008) Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response, Mol. Cell. Biol., 28, 2221–2234.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Tkach, J. M., Yimit, A., Lee, A. Y., Riffle, M., Costanzo, M., Jaschob, D., Hendry, J. A., Ou, J., Moffat, J., Boone, C., Davis, T. N., Nislow, C., and Brown, G. W. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress, Nat. Cell Biol., 14, 966–976.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Wickner, R. B., Masison, D. C., and Edskes, H. K. (1995) [PSI] and [URE3] as yeast prions, Yeast, 11, 1671–1685.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Nizhnikov, A. A., Kondrashkina, A. M., and Galkin, A. P. (2013) Interactions of [NSI+] determinant with SUP35 and VTS1 genes in Saccharomyces cerevisiae, Rus. J. Genet., 49, 1004–1012.

    CAS  Article  Google Scholar 

  43. 43.

    Derkatch, I. L., Bradley, M. E., Hong, J. Y., and Liebman, S. W. (2001) Prions affect the appearance of other prions: the story of [PIN+], Cell, 106, 171–182.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Orlowska-Matuszewska, G., and Wawrzycka, D. (2006) A novel phenotype of eight spores asci in deletants of the prion-like Rnq1p in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 340, 190–193.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Strawn, L. A., and True, H. L. (2006) Deletion of RNQ1 gene reveals novel functional relationship between divergently transcribed Bik1p/CLIP-170 and Sfi1p in spindle pole body separation, Curr. Genet., 50, 347–366.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Arslan, F., Hong, J. Y., Kanneganti, V., Park, S. K., and Liebman, S. W. (2015) Heterologous aggregates promote de novo prion appearance via more than one mechanism, PLoS Genet., 11, e1004814.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Du, Z., Zhang, Y., and Li, L. (2015) The yeast prion [SWI +] abolishes multicellular growth by triggering conformational changes of multiple regulators required for flocculin gene expression, Cell Rep., 13, 2865–2878.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Nizhnikov.

Additional information

Original Russian Text © K. S. Antonets, S. F. Kliver, D. E. Polev, A. R. Shuvalova, E. A. Andreeva, S. G. Inge-Vechtomov, A. A. Nizhnikov, 2017, published in Biokhimiya, 2017, Vol. 82, No. 10, pp. 1497-1509.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonets, K.S., Kliver, S.F., Polev, D.E. et al. Distinct mechanisms of phenotypic effects of inactivation and prionization of Swi1 protein in Saccharomyces cerevisiae . Biochemistry Moscow 82, 1147–1157 (2017). https://doi.org/10.1134/S0006297917100078

Download citation

Keywords

  • amyloid
  • prion
  • Swi1
  • Ade1
  • Sup45
  • yeast Saccharomyces cerevisiae