Skip to main content
Log in

Crystal structure of wild-type centrin 1 from Mus musculus occupied by Ca2+

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mus musculus centrin 1 (MmCen1) is located at the cilium of photoreceptor cells connecting the outer segment through signal transduction components to the metabolically active inner segment. In the cilium, MmCen1 is involved in the translocation of transducin between compartments as a result of photoreceptor activation. In this study, we report the crystal structure of wild-type MmCen1 and its Ca2+-binding properties using structure-based mutagenesis. The crystal structure exhibits three structural features, i.e. four Ca2+ equally occupied at each EF-hand motif, structural changes accompanying helix motion at the N- and C-lobes, and adoption of N–C type dimerization when Ca2+ binds to EF-hand I and II in the N-lobe. The presence of MmCen1 dimers was confirmed in solution by native PAGE. Isothermal titration calorimetry data showed sequential binding of Ca2+ at four independent sites. Mutations S45A and D49A in EF-hand I alone disrupted the Ca2+-binding property of the wild-type protein. Based on the crystal structure of MmCen1, we suggest that a dimerization mode between the N- and C-lobes may be required by Ca2+ binding at the N-lobe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaM:

calmodulin

ITC:

isothermal titration calorimetry

MmCen1:

Mus musculus centrin 1

RIS:

rod inner segment

ROS:

rod outer segment

SPB:

spindle pole body

TnC:

troponin C

References

  1. Salisbury, J. L. (1995) Centrin, centrosomes and mitotic spindle poles, Curr. Opin. Cell Biol., 7, 39–45.

    Article  CAS  PubMed  Google Scholar 

  2. Salisbury, J. L., Baron, A., Surek, B., and Melkonian, M. (1984) Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle, J. Cell Biol., 99, 962–970.

    Article  CAS  PubMed  Google Scholar 

  3. Schiebel, E., and Bornens, M. (1995) In search of a function for centrins, Trends Cell Biol., 5, 197–201.

    Article  CAS  PubMed  Google Scholar 

  4. Gavet, O., Alvarez, C., Gaspar, P., and Bornens, M. (2003) Centrin4p, a novel mammalian centrin specifically expressed in ciliated cells, Mol. Biol. Cell, 14, 1818–1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dantas, T. J., Daly, O. M., and Morrison, C. G. (2012) Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance, Cell. Mol. Life Sci., 69, 2979–2997.

    Article  CAS  PubMed  Google Scholar 

  6. Sanders, M. A., and Salisbury, J. L. (1989) Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii, J. Cell Biol., 108, 1751–1760.

    Article  CAS  PubMed  Google Scholar 

  7. Sanders, M. A., and Salisbury, J. L. (1994) Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii, J. Cell Biol., 124, 795–805.

    Article  CAS  PubMed  Google Scholar 

  8. Biggins, S., and Rose, M. D. (1994) Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body, J. Cell Biol., 125, 843–852.

    Article  CAS  PubMed  Google Scholar 

  9. Kilmartin, J. V. (2003) Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication, J. Cell Biol., 162, 1211–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spang, A., Courtney, I., Grein, K., Matzner, M., and Schiebel, E. (1995) The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body, J. Cell Biol., 128, 863–877.

    Article  CAS  PubMed  Google Scholar 

  11. Khalfan, W., Ivanovska, I., and Rose, M. D. (2000) Functional interaction between the PKC1 pathway and CDC31 network of SPB duplication genes, Genetics, 155, 1543–1559.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sullivan, D. S., Biggins, S., and Rose, M. D. (1998) The yeast centrin, cdc31p, and the interacting protein kinase, Kic1p, are required for cell integrity, J. Cell. Biol., 143, 751–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y., and Hanaoka, F. (2001) Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair, J. Biol. Chem., 276, 18665–18672.

    Article  CAS  PubMed  Google Scholar 

  14. Giessl, A., Pulvermuller, A., Trojan, P., Park, J. H., Choe, H. W., Ernst, O. P., Hofmann, K. P., and Wolfrum, U. (2004) Differential expression and interaction with the visual G-protein transducin of centrin isoforms in mammalian photoreceptor cells, J. Biol. Chem., 279, 51472–51481.

    Article  CAS  PubMed  Google Scholar 

  15. Pulvermuller, A., Giessl, A., Heck, M., Wottrich, R., Schmitt, A., Ernst, O. P., Choe, H. W., Hofmann, K. P., and Wolfrum, U. (2002) Calcium-dependent assembly of centrin–G-protein complex in photoreceptor cells, Mol. Cell. Biol., 22, 2194–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wolfrum, U., and Salisbury, J. L. (1998) Expression of centrin isoforms in the mammalian retina, Exp. Cell. Res., 242, 10–17.

    Article  CAS  PubMed  Google Scholar 

  17. Charbonnier, J. B., Renaud, E., Miron, S., Le Du, M. H., Blouquit, Y., Duchambon, P., Christova, P., Shosheva, A., Rose, T., Angulo, J. F., and Craescu, C. T. (2007) Structural, thermodynamic, and cellular characterization of human centrin 2 interaction with xeroderma pigmento-sum group C protein, J. Mol. Biol., 373, 1032–1046.

    Article  CAS  PubMed  Google Scholar 

  18. Li, S., Sandercock, A. M., Conduit, P., Robinson, C. V., Williams, R. L., and Kilmartin, J. V. (2006) Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication, J. Cell. Biol., 173, 867–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sosa Ldel, V., Alfaro, E., Santiago, J., Narvaez, D., Rosado, M. C., Rodriguez, A., Gomez, A. M., Schreiter, E. R., and Pastrana-Rios, B. (2011) The structure, molecular dynamics, and energetics of centrin–melittin complex, Proteins, 79, 3132–3143.

    Article  PubMed  Google Scholar 

  20. Durussel, I., Blouquit, Y., Middendorp, S., Craescu, C. T., and Cox, J. A. (2000) Cation- and peptide-binding properties of human centrin 2, FEBS Lett., 472, 208–212.

    Article  CAS  PubMed  Google Scholar 

  21. Geier, B. M., Wiech, H., and Schiebel, E. (1996) Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p, J. Biol. Chem., 271, 28366–28374.

    Article  CAS  PubMed  Google Scholar 

  22. Weber, C., Lee, V. D., Chazin, W. J., and Huang, B. (1994) High level expression in Escherichia coli and characterization of the EF-hand calcium-binding protein caltractin, J. Biol. Chem., 269, 15795–15802.

    CAS  PubMed  Google Scholar 

  23. Thompson, J. R., Ryan, Z. C., Salisbury, J. L., and Kumar, R. (2006) The structure of the human centrin 2–xeroderma pigmentosum group C protein complex, J. Biol. Chem., 281, 18746–18752.

    Article  CAS  PubMed  Google Scholar 

  24. Duan, L., Zhao, Y. Q., Wang, Z. J., Li, G. T., Liang, A. H., and Yang, B. S. (2008) Lutetium(III)-dependent self-assembly study of ciliate Euplotes octocarinatus centrin, J. Inorg. Biochem., 102, 268–277.

    Article  CAS  PubMed  Google Scholar 

  25. Wiech, H., Geier, B. M., Paschke, T., Spang, A., Grein, K., Steinkotter, J., Melkonian, M., and Schiebel, E. (1996) Characterization of green alga, yeast, and human centrins. Specific subdomain features determine functional diversity, J. Biol. Chem., 271, 22453–22461.

    Article  CAS  PubMed  Google Scholar 

  26. Tourbez, M., Firanescu, C., Yang, A., Unipan, L., Duchambon, P., Blouquit, Y., and Craescu, C. T. (2004) Calcium-dependent self-assembly of human centrin 2, J. Biol. Chem., 279, 47672–47680.

    Article  CAS  PubMed  Google Scholar 

  27. Park, J. H., Pulvermuller, A., Scheerer, P., Rausch, S., Giessl, A., Hohne, W., Wolfrum, U., Hofmann, K. P., Ernst, O. P., Choe, H. W., and Krauss, N. (2006) Insights into functional aspects of centrins from the structure of N-terminally extended mouse centrin 1, Vis. Res., 46, 4568–4574.

    Article  CAS  PubMed  Google Scholar 

  28. Park, J. H., Krauss, N., Pulvermuller, A., Scheerer, P., Hohne, W., Giessl, A., Wolfrum, U., Hofmann, K. P., Ernst, O. P., and Choe, H. W. (2005) Crystallization and preliminary X-ray studies of mouse centrin 1, Struct. Biol. Crystal. Commun., 61, 510–513.

    Article  CAS  Google Scholar 

  29. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  30. Kabsch, W. (2010) Xds, Biol. Crystal., 66, 125–132.

    Article  CAS  Google Scholar 

  31. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software, J. Appl. Crystallogr., 40, 658–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics, Biol. Crystal., 60, 2126–2132.

    Article  Google Scholar 

  33. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maxi-mum-likelihood method, Biol. Crystal., 53, 240–255.

    Article  CAS  Google Scholar 

  34. Laskowski, R. A., MacArthur, M. W., and Thornton, J. M. (1998) Validation of protein models derived from experi-ment, Curr. Opin. Struct. Biol., 8, 631–639.

    Article  CAS  PubMed  Google Scholar 

  35. Schrodinger, L. (2010) The PYMOL molecular graphics system version 1.3rl.

  36. Gray-Keller, M. P., and Detwiler, P. B. (1996) Ca2+ dependence of dark- and light-adapted flash responses in rod photoreceptors, Neuron, 17, 323–331.

    Article  CAS  PubMed  Google Scholar 

  37. Heidarsson, P. O., Naqvi, M. M., Otazo, M. R., Mossa, A., Kragelund, B. B., and Cecconi, C. (2014) Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1, Proc. Natl. Acad. Sci. USA, 111, 13069–13074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matei, E., Miron, S., Blouquit, Y., Duchambon, P., Durussel, I., Cox, J. A., and Craescu, C. T. (2003) C-ter-minal half of human centrin 2 behaves like a regulatory EF-hand domain, Biochemistry, 42, 1439–1450.

    Article  CAS  PubMed  Google Scholar 

  39. Phanindranath, R., Sudhakar, D. V., Sharma, A. K., Thangaraj, K., and Sharma, Y. (2016) Optimization of purification method and characterization of recombinant human centrin-1, Protein Express. Purif., 124, 48–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hee Park.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 10, pp. 1475-1488.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Kim, D.S., Hong, J.E. et al. Crystal structure of wild-type centrin 1 from Mus musculus occupied by Ca2+ . Biochemistry Moscow 82, 1129–1139 (2017). https://doi.org/10.1134/S0006297917100054

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917100054

Keywords

Navigation