Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 10, pp 1088–1102 | Cite as

Molecular and cellular mechanisms of sporadic Alzheimer’s disease: Studies on rodent models in vivo

  • N. V. Gulyaeva
  • N. V. Bobkova
  • N. G. Kolosova
  • A. N. Samokhin
  • M. Yu. Stepanichev
  • N. A. Stefanova
Review

Abstract

In this review, recent data are presented on molecular and cellular mechanisms of pathogenesis of the most widespread (about 95%) sporadic forms of Alzheimer’s disease obtained on in vivo rodent models. Although none of the available models can fully reproduce the human disease, several key molecular mechanisms (such as dysfunction of neurotransmitter systems, especially of the acetylcholinergic system, β-amyloid toxicity, oxidative stress, neuroinflammation, mitochondrial dysfunction, disturbances in neurotrophic systems) are confirmed with different models. Injection models, olfactory bulbectomy, and senescence accelerated OXYS rats are reviewed in detail. These three approaches to in vivo modeling of sporadic Alzheimer’s disease have demonstrated a considerable similarity in molecular and cellular mechanisms of pathology development. Studies on these models provide complementary data, and each model possesses its specific advantages. A general analysis of the data reported for the three models provides a multifaceted and the currently most complete molecular picture of sporadic Alzheimer’s disease. This is highly relevant also from the practical viewpoint because it creates a basis for elaboration and preclinical studies of means for treatment of this disease.

Keywords

sporadic Alzheimer’s disease in vivo rodent models beta-amyloid cholinergic deficit injection models olfac-tory bulbectomy OXYS rats 

References

  1. 1.
    Irizarry, M. C., McNamara, M., Fedorchak, K., Hsiao, K., and Hyman, B. T. (1997) APPSw transgenic mice develop age-related A beta deposits and neurophil abnormalities, but no neuronal loss in CA1, J. Neuropathol. Exp. Neurol., 56, 965–973.PubMedCrossRefGoogle Scholar
  2. 2.
    Shinohara, M., Fujioka, S., Murray, M. E., Wojtas, A., Baker, M., Rovelet-Lecrux, A., Rademakers, R., Das, P., Parisi, J. E., Graff-Radford, N. R., Petersen, R. C., Dickson, D. W., and Bu, G. (2014) Regional distribution of synaptic markers and APP correlate with distinct clinico-pathological features in sporadic and familial Alzheimer’s disease, Brain, 137, 1533–1549.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Coyle, J. T., Price, D. L., and DeLong, M. R. (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation, Science, 219, 1184–1190.PubMedCrossRefGoogle Scholar
  4. 4.
    Winkler, J., Thal, L. J., Gage, F. H., and Fisher, L. J. (1998) Cholinergic strategies for Alzheimer’s disease, J. Mol. Med., 76, 555–567.PubMedCrossRefGoogle Scholar
  5. 5.
    McDonald, M. P., and Overmier, J. B. (1998) Present imperfect: a critical review of animal models of the mnemonic impairments in Alzheimer’s disease, Neurosci. Biobehav. Rev., 22, 99–120.PubMedCrossRefGoogle Scholar
  6. 6.
    Hanin, A., Fisher, A., Hortnagl, H., Leventer, S. M., Potter, P. E., and Walsh, T. J. (1987) Ethylcholine aziridini-um (AF64A; ECMA) and other potential cholinergic neu-ron-specific neurotoxins, in Psychopharmacology: The Third Generation of Progress (Meltzer, H. Y., ed.) Raven Press, N. Y., pp. 341–349.Google Scholar
  7. 7.
    Chrobak, J. J., Hanin, I., Schmechel, D. E., and Walsh, T. J. (1988) AF64A-induced working memory impairment: behavioral, neurochemical and histological correlates, Brain Res., 463, 107–117.PubMedCrossRefGoogle Scholar
  8. 8.
    Lorens, S. K., Kindel, G., Dong, X. W., Lee, J. M., and Hanin, I. (1991) Septal choline acetyltransferase immunoreactive neurons: dose-dependent effects of AF64A, Brain Res. Bull., 26, 965–971.PubMedCrossRefGoogle Scholar
  9. 9.
    Hanin, I. (1996) The AF64A model of cholinergic hypo-function: an update, Life Sci., 58, 1955–1964.PubMedCrossRefGoogle Scholar
  10. 10.
    Eva, C., Fabrazzo, M., and Costa, E. (1987) Changes of cholinergic, noradrenergic and serotonergic synaptic transmis-sion indices by ethylcholine aziridinium ion (AF64A) infused intraventricularly, J. Pharmacol. Exp. Ther., 222, 181–186.Google Scholar
  11. 11.
    Walsh, T. J., Tilson, H. A., DeHaven, D. L., Mailman, R. B., Fisher, A., and Hanin, I. (1984) AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long-term passive avoidance and radial-arm maze deficits in the rat, Brain Res., 321, 91–102.PubMedCrossRefGoogle Scholar
  12. 12.
    Gulyaeva, N. V., Lazareva, N. A., Libe, M. L., Mitrokhina, O. S., Onufriev, M. V., Stepanichev, M. Y., Chernysevskaya, I. A., and Walsh, T. J. (1996) Oxidative stress in the brain following intraventricular administration of ethylcholine aziridinium (AF64A), Brain Res., 726, 174–180.PubMedCrossRefGoogle Scholar
  13. 13.
    Stepanichev, M. Y., and Gulyaeva, N. V. (2014) Injection models of Alzheimer’s disease as an approach to investiga-tion of cellular mechanisms of pathogenesis: neurodegen-erative changes, inflammation, neurogenesis disorders, in Neurodegenerative Diseases: From the Genome to the Whole Organism (Ugryumov, M. V., ed.) [in Russian], Vol. 2, Nauchnyi Mir, Moscow, pp. 352–379.Google Scholar
  14. 14.
    Hanin, I. (1997) Molecular mechanisms of AF64A toxicity in the cholinergic neuron, in Progress in Alzheimer’s and Parkinson’s Diseases (Fisher, A., ed.) Plenum Press, N. Y.-London, pp. 675–680.Google Scholar
  15. 15.
    Rinner, W. A., Pifl, C., Lassmann, H., and Hortnagl, H. (1997) Induction of apoptosis in vitro and in vivo by the cholinergic neurotoxin ethylcholine aziridinium, Neuroscience, 79, 535–542.PubMedCrossRefGoogle Scholar
  16. 16.
    Simon, H. U., Haj-Yehia, A., and Levi-Schaffer, F. (2000) Role of reactive oxygen species (ROS) in apoptosis induction, Apoptosis, 5, 415–418.PubMedCrossRefGoogle Scholar
  17. 17.
    Wortwein, G., Stackman, R. W., and Walsh, T. J. (1994) Vitamin E prevents the place learning deficit and the cholinergic hypofunction induced by AF64A, Exp. Neurol., 125, 15–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Emerich, D. F., and Walsh, T. J. (1990) Ganglioside AGF2 promotes task-specific recovery and attenuates the cholinergic hypofunction induced by AF64A, Brain Res., 572, 299–307.CrossRefGoogle Scholar
  19. 19.
    Emerich, D. F., Black, B. A., Kesslak, J. P., Cotman, C. W., and Walsh, T. J. (1992) Transplantation of fetal cholinergic neurons into the hippocampus attenuates the cognitive and neurochemical deficits induced by AF64A, Brain Res. Bull., 28, 219–226.PubMedCrossRefGoogle Scholar
  20. 20.
    Moiseeva, Y. V., Onufriev, M. V., Lazareva, N. A., Stepanichev, M. Y., and Gulyaeva, N. V. (2001) Free radical mechanisms of septo-hippocampal neurodegeneration caused by cholinotoxin AF64A in rats in vivo, Neirokhimiya, 18, 287–289.Google Scholar
  21. 21.
    Lautenschlager, M., Onufriev, M. V., Gulyaeva, N. V., Harms, C., Freyer, D., Sehmsdorf, U., Ruscher, K., Moiseeva, Y. V., Arnswald, A., Victorov, I., Dirnagl, U., Weber, J. R., and Hortnagl, H. (2000) Role of nitric oxide in the ethylcholine aziridinium model of delayed apoptotic neurodegeneration in vivo and in vitro, Neuroscience, 97, 383–393.PubMedCrossRefGoogle Scholar
  22. 22.
    Stepanichev, M. Y., Libe, M. L., Chernyshevskaya, I. A., Moiseenok, A. G., and Gulyaeva, N. V. (2007) Delayed expression of NADPH-diaphorase in rat brain after administration of the cholinotoxin AF64A, Neurochem. J., 1, 244–248.CrossRefGoogle Scholar
  23. 23.
    Lautenshlager, M., Arnswald, A., Freyer, D., Weber, J. R., and Hortnagl, H. (1997) The AF64A model of cholinergic hypofunction: role of nitric oxide in AF64A-mediated neu-rodegeneration, in Progress in Alzheimer’s and Parkinson’s Diseases (Fisher, A., ed.) Plenum Press, N. Y.-London, pp. 681–686.Google Scholar
  24. 24.
    Wiley, R. G., Oeltmann, T. N., and Lappi, D. A. (1991) Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor, Brain Res., 562, 149–153.PubMedCrossRefGoogle Scholar
  25. 25.
    Waite, J. J., Chen, A. D., Wardlow, M. L., Wiley, R. G., Lappi, D. A., and Thal, L. J. (1995) 192-Immunoglobulin G-saporin produces graded behavioral and biochemical changes accompanying the loss of cholinergic neurons of the basal forebrain and cerebellar Purkinje cells, Neuroscience, 65, 463–476.PubMedCrossRefGoogle Scholar
  26. 26.
    Rossner, S., Hartig, W., Schliebs, R., Bruckner, G., Brauer, K., Perez-Polo, J. R., Wiley, R. G., and Bigl, V. (1995) 192IgG-saporin immunotoxin-induced loss of cholinergic cells differentially activates microglia in rat basal forebrain nuclei, J. Neurosci. Res., 41, 335–346.PubMedCrossRefGoogle Scholar
  27. 27.
    Seeger, G., Hartig, W., Rossner, S., Schliebs, R., Bruckner, G., Bigl, V., and Brauer, K. (1997) Electron microscopic evidence for microglial phagocytic activity and cholinergic cell death after administration of the immunotoxin 192IgG-saporin in rat, J. Neurosci. Res., 48, 465–476.PubMedCrossRefGoogle Scholar
  28. 28.
    Baxter, M. G., Bucci, D. J., Sobel, T. J., Williams, M. J., Gorman, L. K., and Gallagher, M. (1996) Intact spatial learning following lesions of basal forebrain cholinergic neurons, Neuroreport, 7, 1417–1420.PubMedCrossRefGoogle Scholar
  29. 29.
    Bassant, M. H., Jouvenceau, A., Apartis, E., Poindessous-Jazat, F., Dutar, P., and Billard, J. M. (1998) Immunolesion of the cholinergic basal forebrain: effects on functional properties of hippocampal and septal neurons, Int. J. Dev. Neurosci., 16, 613–632.PubMedCrossRefGoogle Scholar
  30. 30.
    Cooper-Kuhn, C. M., Winkler, J., and Kuhn, H. G. (2004) Decreased neurogenesis after cholinergic forebrain lesion in the adult rat, J. Neurosci. Res., 77, 155–165.PubMedCrossRefGoogle Scholar
  31. 31.
    Wrenn, C. C., and Wiley, R. G. (1998) The behavioral functions of the cholinergic basal forebrain: lessons from 192IgG-saporin, Int. J. Dev. Neurosci., 16, 595–602.PubMedCrossRefGoogle Scholar
  32. 32.
    Berchtold, N. C., Kesslak, J. P., and Cotman, C. W. (2002) Hippocampal brain-derived neurotrophic factor gene regu-lation by exercise and the medial septum, J. Neurosci. Res., 68, 511–521.PubMedCrossRefGoogle Scholar
  33. 33.
    Paban, V., Farioli, F., Romier, B., Chambon, C., and Alescio-Lautier, B. (2010) Gene expression profile in rat hippocampus with and without memory deficit, Neurobiol. Learning Memory, 94, 42–56.CrossRefGoogle Scholar
  34. 34.
    Paban, V., Chambon, C., Manrique, C., Touzet, C., and Alescio-Lautier, B. (2011) Neurotrophic signaling molecules associated with cholinergic damage in young and aged rats: environmental enrichment as potential therapeutic agent, Neurobiol. Aging, 32, 470–485.PubMedCrossRefGoogle Scholar
  35. 35.
    Paban, V., Chambon, C., Farioli, F., and Alescio-Lautier, B. (2011) Gene regulation in the rat prefrontal cortex after learning with or without cholinergic insult, Neurobiol. Learning Memory, 95, 441–452.CrossRefGoogle Scholar
  36. 36.
    Santamaria, J., Khalfallah, O., Sauty, C., Brunet, I., Sibieude, M., Mallet, J., Berrard, S., and Lecomte, M. J. (2009) Silencing of choline acetyltransferase expression by lentivirus-mediated RNA interference in cultured cells and in the adult rodent brain, J. Neurosci. Res., 87, 532–544.PubMedCrossRefGoogle Scholar
  37. 37.
    Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., and Malinow, R. (2003) APP processing and synaptic function, Neuron, 37, 925–937.PubMedCrossRefGoogle Scholar
  38. 38.
    Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo, Nature, 416, 535–539.PubMedCrossRefGoogle Scholar
  39. 39.
    Morgan, D. (2007) Amyloid, memory and neurogenesis, Exp. Neurol., 205, 330–335.PubMedCrossRefGoogle Scholar
  40. 40.
    Hardy, J. (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal, J. Neurochem., 110, 1129–1134.PubMedCrossRefGoogle Scholar
  41. 41.
    Gulyaeva, N. V., and Stepanichev, M. Yu. (2010) Abeta(25-35) as proxyholder for amyloidogenic peptides: in vivo evidence, Exp. Neurol., 222, 6–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen, S. Y., Harding, J. W., and Barnes, C. D. (1996) Neuropathology of synthetic beta-amyloid peptide analogs in vivo, Brain Res., 715, 44–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Kowall, N., McKee, A., Yankner, B., and Beal, M. F. (1992) In vivo neurotoxicity of beta-amyloid [beta(1-40)] and the beta(25-35) fragment, Neurobiol. Aging, 13, 537–542.PubMedCrossRefGoogle Scholar
  44. 44.
    Stepanichev, M. Y., Zdobnova, I. M., Yakovlev, A. A., Onufriev, M. V., Lazareva, N. A., Zarubenko, I. I., and Gulyaeva, N. V. (2003) Effects of tumor necrosis factor-alpha central administration on hippocampal damage in rat induced by amyloid beta-peptide (25-35), J. Neurosci. Res., 71, 110–120.PubMedCrossRefGoogle Scholar
  45. 45.
    Maurice, T., Lockhart, B., and Privat, A. (1996) Amnesia induced in mice by centrally administered β-amyloid peptides involves cholinergic dysfunction, Brain Res., 706, 181–189.PubMedCrossRefGoogle Scholar
  46. 46.
    Delobette, S., Privat, A., and Maurice, T. (1997) In vitro aggregation facilities beta-amyloid peptide-(25-35)-induced amnesia in the rat, Eur. J. Pharmacol., 319, 1–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Yamaguchi, Y., and Kawashima, S. (2001) Effects of β-amyloid-(25-35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat, Eur. J. Pharmacol., 412, 265–272.PubMedCrossRefGoogle Scholar
  48. 48.
    Stepanichev, M., Lazareva, N., Tukhbatova, G., Salozhin, S., and Gulyaeva, N. (2014) Transient disturbances in con-textual fear memory induced by Aβ(25-35) in rats are accompanied by cholinergic dysfunction, Behav. Brain Res., 259, 152–157.PubMedCrossRefGoogle Scholar
  49. 49.
    Berrard, S., Varoqui, H., Cervini, R., Israel, M., Mallet, J., and Diebler, M. F. (1995) Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter, J. Neurochem., 65, 939–942.PubMedCrossRefGoogle Scholar
  50. 50.
    Gordon, R. Y., Makarova, E. G., Podolski, I. Y., Rogachevsky, V. V., and Kordonets, O. L. (2012) Impairment of protein synthesis is an early effect of amy-loid-β in neurons, Neurochem. J., 29, 139–150.Google Scholar
  51. 51.
    Ding, Q., Markesbery, W. R., Chen, Q., Li, F., and Keller, J. N. (2005) Ribosome dysfunction is an early event in Alzheimer’s disease, J. Neurosci., 25, 9171–9175.PubMedCrossRefGoogle Scholar
  52. 52.
    Shan, X., Chang, Y., and Lin, C. L. (2007) Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression, FASEB J., 21, 2753–2764.PubMedCrossRefGoogle Scholar
  53. 53.
    Stepanichev, M. Y., Zdobnova, I. M., Zarubenko, I. I., Lazareva, N. A., and Gulyaeva, N. V. (2004) Amyloid-beta(25-35)-induced memory impairments correlate with cell loss in rat hippocampus, Physiol. Behav., 80, 647–655.PubMedCrossRefGoogle Scholar
  54. 54.
    Virok, D. P., Simon, D., Bozso, Z., Rajko, R., Datki, Z., Balint, E., Szegedi, V., Janaky, T., Penke, B., and Fulop, L. (2011) Protein array based interactome analysis of amyloid-β indicates an inhibition of protein translation, J. Proteome Res., 10, 1538–1547.PubMedCrossRefGoogle Scholar
  55. 55.
    Frautschy, S. A., Cole, G. M., and Baird, A. (1992) Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer’s beta-amyloid, Am. J. Pathol., 140, 1389–1399.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Hickman, S. E., Allison, E. K., and El Khoury, J. (2008) Microglial dysfunction and defective beta-amyloid clear-ance pathways in aging Alzheimer’s disease mice, J. Neurosci., 28, 8354–8360.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Qiu, W. Q., Ye, Z., Kholodenko, D., Seubert, P., and Selkoe, D. J. (1997) Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells, J. Biol. Chem., 272, 6641–6646.PubMedCrossRefGoogle Scholar
  58. 58.
    Weldon, D., Rogers, S. D., Ghilardi, J. R., Finke, M. P., Cleary, J. P., O’Hare, E., Esler, W. P., Maggio, J. E., and Mantyh, P. W. (1998) Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a selected population of neurons in rat CNS in vivo, J. Neurosci., 18, 2161–2173.PubMedGoogle Scholar
  59. 59.
    Rogers, J., and Lue, L. F. (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid β-peptide as linked phenomena in Alzheimer’s disease, Neurochem. Int., 39, 333–340.PubMedCrossRefGoogle Scholar
  60. 60.
    Sigurdsson, E. M., Lee, J. M., Dong, X. W., Hejna, M. J., and Lorens, S. A. (1997) Bilateral injections of amyloid-beta 25-35 into the amygdala of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects, Neurobiol. Aging, 18, 591–608.PubMedCrossRefGoogle Scholar
  61. 61.
    Sigurdsson, E. M., Lee, J. M., Dong, X. W., Hejna, M. J., and Lorens, S. A. (1997) Laterality in the histological effects of injections of amyloid-beta 25-35 into the amygdala of young Fischer rats, J. Neuropathol. Exp. Neurol., 56, 714–725.PubMedCrossRefGoogle Scholar
  62. 62.
    Stepanichev, M. Y., Zdobnova, I. M., Yakovlev, A. A., Onufriev, M. V., Lazareva, N. A., Zarubenko, I. I., and Gulyaeva, N. V. (2003) Effects of tumor necrosis factor-alpha central administration on hippocampal damage in rat induced by amyloid beta-peptide (25-35), J. Neurosci. Res., 71, 110–120.PubMedCrossRefGoogle Scholar
  63. 63.
    Stepanichev, M. Y., Flegontova, O. V., Lazareva, N. A., Egorova, L. K., and Gulyaeva, N. V. (2006) Influence of anti-inflammatory cytokine interleukin-4 on neurodegeneration I rats induced by beta-amyloid peptide, Neirokhimiya, 23, 67–72.Google Scholar
  64. 64.
    Mitrokhina, O. S., Stepanichev, M., Lazareva, N. A., Moiseeva, Y. V., Onufriev, M. V., and Gulyaeva, N. V. (1999) Effect of intracerebroventricular administration of the (25-35) fragment of beta-amyloid peptide on the lipid peroxidation level in rat brain structures and blood, Dokl. Akad. Nauk, 368, 711–713.PubMedGoogle Scholar
  65. 65.
    Stepanichev, M. Y., Onufriev, M. V., Yakovlev, A. A., Khrenov, A. I., Peregud, D. I., Vorontsova, O. N., Lazareva, N. A., and Gulyaeva, N. V. (2008) Amyloid-beta (25-35) increases activity of neuronal NO-synthase in rat brain, Neurochem. Int., 52, 1114–1124.PubMedCrossRefGoogle Scholar
  66. 66.
    Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C., and Greenberg, D. A. (2004) Proc. Natl. Acad. Sci. USA, 101, 343–347.PubMedCrossRefGoogle Scholar
  67. 67.
    Hamilton, L. K., Joppe, S. E., Cochard, L., and Fernandes, K. J. (2013) Aging and neurogenesis in the adult forebrain: what we have learned and where we should go from here, Eur. J. Neurosci., 37, 1978–1986.PubMedCrossRefGoogle Scholar
  68. 68.
    Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W., and Van Praag, H. (2010) When neurogenesis encounters aging and disease, Trends Neurosci., 33, 569–579.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Haughey, N. J., Nath, A., Chan, S. L., Borchard, A. C., Rao, M. S., and Mattson, M. P. (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease, J. Neurochem., 83, 1509–1524.PubMedCrossRefGoogle Scholar
  70. 70.
    Sotthibundhu, A., Li, Q. X., Thangnipon, W., and Coulson, E. J. (2009) Abeta(1-42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor, Neurobiol. Aging, 30, 1975–1985.PubMedCrossRefGoogle Scholar
  71. 71.
    Li, X., and Zuo, P. (2005) Effects of Abeta25-35 on neurogenesis in the adult mouse subventricular zone and dentate gyrus, Neurol. Res., 27, 218–222.PubMedCrossRefGoogle Scholar
  72. 72.
    Stepanichev, M. Y., Moiseeva, Y. V., Lazareva, N. A., Onufriev, M. V., and Gulyaeva, N. V. (2009) Changes of the cell proliferation in the subventricular zone of the brain of adult rats on injection of β-amyloid peptide (25-35), Morfologiya, 135, 13–16.Google Scholar
  73. 73.
    Estrada, C., and Murillo-Carretero, M. (2005) Nitric oxide and adult neurogenesis in health and disease, Neuroscientist, 11, 294–307.PubMedCrossRefGoogle Scholar
  74. 74.
    Moreno-Lopez, B., Noval, J. A., Gonzalez-Bonet, L., and Estrada, C. (2000) Morphological bases for a role of nitric oxide in adult neurogenesis, Brain Res., 869, 244–250.PubMedCrossRefGoogle Scholar
  75. 75.
    Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P., and Snyder, S. H. (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide, Nat. Cell Biol., 3, 193–197.PubMedCrossRefGoogle Scholar
  76. 76.
    Murillo-Carretero, M., Ruano, M. J., Matarredona, E. R., Villalobo, A., and Estrada, C. (2002) Antiproliferative effect of nitric oxide on epidermal growth factor-responsive human neuroblastoma cells, J. Neurochem., 83, 119–131.PubMedCrossRefGoogle Scholar
  77. 77.
    Salkovic-Petrisic, M., Knezovic, A., Hoyer, S., and Riederer, P. (2013) What have we learned from the strepto-zotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research, J. Neural Transm. (Vienna), 120, 233–252.CrossRefGoogle Scholar
  78. 78.
    Genrikhs, E. E., Stelmashook, E. V., Golyshev, S. A., Aleksandrova, O. P., and Isaev, N. K. (2017) Streptozotocin causes neurotoxic effect in cultured cerebellar granule neurons, Brain. Res. Bull., 130, 90–94.PubMedCrossRefGoogle Scholar
  79. 79.
    Halawany, A. M., Sayed, N. S., Abdallah, H. M., and Dine, R. S. (2017) Protective effects of gingerol on streptozo-tocin-induced sporadic Alzheimer’s disease: emphasis on inhibition of β-amyloid, COX-2, alpha-, beta-secretases and APH1a, Sci. Rep., 7, 2902.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bassani, T. B., Bonato, J. M., Machado, M. M. F., Coppola-Segovia, V., Moura, E. L. R., Zanata, S. M., Oliveira, R. M., and Vital, M. A. (2017) Decrease in adult neurogenesis and neuroinflammation are involved in spatial memory impairment in the streptozotocin-induced model of sporadic Alzheimer’s disease in rats, Mol. Neurobiol., 16.Google Scholar
  81. 81.
    Zakaria, R., Wan Yaacob, W. M., Othman, Z., Long, I., Ahmad, A. H., and Al-Rahbi, B. (2017) Lipopolysaccha-ride-induced memory impairment in rats: a model of Alzheimer’s disease, Physiol. Res., 12.Google Scholar
  82. 82.
    Houdek, H. M., Larson, J., Watt, J. A., and Rosenberger, T. A. (2014) Bacterial lipopolysaccharide induces a dose-dependent activation of neuroglia and loss of basal fore-brain cholinergic cells in the rat brain, Inflamm. Cell Signal., 1, 47.Google Scholar
  83. 83.
    Willard, L. B., Hauss-Wegrzyniak, B., and Wenk, G. L. (1999) Pathological and biochemical consequences of acute and chronic neuroinflammation within the basal forebrain cholinergic system of rats, Neuroscience, 88, 193–200.PubMedCrossRefGoogle Scholar
  84. 84.
    Arai, H., Furuya, T., Yasuda, T., Miura, M., Mizuno, Y., and Mochizuki, H. (2004) Neurotoxic effects of lipopolysaccha-ride on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1beta, and expression of caspase-11 in mice, J. Biol. Chem., 279, 51647–51653.PubMedCrossRefGoogle Scholar
  85. 85.
    Desai, R. A., Davies, A. L., Tachrount, M., Kasti, M., Laulund, F., Golay, X., and Smith, K. J. (2016) Cause and prevention of demyelination in a model multiple sclerosis lesion, Ann. Neurol., 79, 591–604.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Stepanichev, M., Dygalo, N. N., Grigoryan, G., Shishkina, G. T., and Gulyaeva, N. (2014) Rodent models of depres-sion: neurotrophic and neuroinflammatory biomarkers, Biomed. Res. Int., 932757.Google Scholar
  87. 87.
    Attems, J., Lintner, F., and Jellinger, K. A. (2005) Olfactory involvement in aging and Alzheimer’s disease: an autopsy study, J. Alzheimer’s Dis., 7, 149–157.CrossRefGoogle Scholar
  88. 88.
    Van Hoesen, G. W., Augustinack, J. C., Dierking, J., Redman, S. J., and Thangavel, R. (2000) The parahippocampal gyrus in Alzheimer’s disease. Clinical and pre-clinical neuroanatomical correlates, Ann. N. Y. Acad. Sci. USA, 911, 254–274.CrossRefGoogle Scholar
  89. 89.
    Kovacs, T., Cairns, N. J., and Lantos, P. L. (1999) Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease, Neuropathol. Appl. Neurobiol., 25, 481–491.PubMedCrossRefGoogle Scholar
  90. 90.
    Kus, L., Borys, E., Ping, Chu, Y., Ferguson, S. M., Blakely, R. D., Emborg, M. E., Kordower, J. H., Levey, A. I., and Mufson, E. J. (2003) Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system, J. Comp. Neurol., 463, 341–357.PubMedCrossRefGoogle Scholar
  91. 91.
    Wang, H. Y., Lee, D. H., D’Andrea, M. R., Peterson, P. A., Shank, R. P., and Reitz, A. B. (2000) Beta-amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology, J. Biol. Chem., 275, 5626–5632.PubMedCrossRefGoogle Scholar
  92. 92.
    Nagele, R. G., D’Andrea, M. R., Anderson, W. J., and Wang, H. Y. (2002) Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer’s disease, Neuroscience, 110, 199–211.PubMedCrossRefGoogle Scholar
  93. 93.
    Christen-Zaech, S., Kraftsik, R., Pillevuit, O., Kiraly, M., Martins, R., Khalili, K., and Miklossy, J. (2003) Early olfactory involvement in Alzheimer’s disease, Can. J. Neurol. Sci., 30, 20–25.PubMedCrossRefGoogle Scholar
  94. 94.
    Ferreyra-Moyano, H., and Barragan, E. (1989) The olfactory system and Alzheimer’s disease, Int. J. Neurosci., 49, 157–197.PubMedCrossRefGoogle Scholar
  95. 95.
    Pearson, R. C., Esiri, M. M., Hiorns, R. W., Wilcock, G. K., and Powell, T. P. (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 82, 4531–4534.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Brunjes, P. C., and Frazier, L. L. (1986) Maturation and plasticity in the olfactory system of vertebrates, Brain Res., 396, 1–45.PubMedCrossRefGoogle Scholar
  97. 97.
    Ruitenberg, M. J., and Vukovic, J. (2008) Promoting central nervous system regeneration: lessons from cranial nerve I, Restor. Neurol. Neurosci., 26, 183–196.PubMedGoogle Scholar
  98. 98.
    Gomez, C., Brinon, J. G., Orio, L., Colado, M. I., Lawrence, A. J., Zhou, F. C., Vidal, M., Barbado, M. V., and Alonso, J. R. (2007) Changes in the serotonergic system in the main olfactory bulb of rats unilaterally deprived from birth to adulthood, J. Neurochem., 100, 924–938.PubMedCrossRefGoogle Scholar
  99. 99.
    Gomez, C., Brinon, J. G., Colado, M. I., Orio, L., Vidal, M., Barbado, M. V., and Alonso, J. R. (2006) Differential effects of unilateral olfactory deprivation on noradrenergic and cholinergic systems in the main olfactory bulb of the rat, Neuroscience, 141, 2117–2128.PubMedCrossRefGoogle Scholar
  100. 100.
    Loopuijt, L. D., and Sebens, J. B. (1990) Loss of dopamine receptors in the olfactory bulb of patients with Alzheimer’s disease, Brain Res., 529, 239–234.PubMedCrossRefGoogle Scholar
  101. 101.
    Damulin, I. V. (1999) Alzheimer’s disease, Ross. Med. Zh., 6, 45–48.Google Scholar
  102. 102.
    Gavrilova, S. I. (2002) Alzheimer’s disease: current concepts about diagnosis and therapy, Ross. Med. Zh., 10, 36.Google Scholar
  103. 103.
    Aleksandrova, I. Y., Kuvichkin, V. V., Kashparov, I. V., Medvinskaya, N. I., Nesterova, I. V., Lunin, S. M., Samokhin, A. N., and Bobkova, N. V. (2004) Increased level of β-amyloid in the brain of bulbectomized mice, Biochemistry (Moscow), 69, 176–180.CrossRefGoogle Scholar
  104. 104.
    Nesterova, I. V., Gurevich, E. V., Nesterov, V. I., Otmakhova, N. A., and Bobkova, N. V. (1997) Bulbectomy-induced loss of raphe neurons is counteracted by antidepressant treatment, Prog. Neuropsychopharm. Biol. Psychiatry, 21, 127–140.CrossRefGoogle Scholar
  105. 105.
    Bobkova, N. V., Nesterova, I. V., and Nesterov, V. I. (2001) The state of cholinergic structures in forebrain of bulbectomized mice, Bull. Exp. Biol. Med., 131, 427–431.PubMedCrossRefGoogle Scholar
  106. 106.
    Kamynina, A. V., Volpina, O. M., Medvinskaya, N. I., Aleksandrova, I. J., Volkova, T. D., Koroev, D. O., Samokhin, A. N., Nesterova, I. V., Shelukhina, I. V., Kryukova, E. V., Tsetlin, V. I., Ivanov, V. T., and Bobkova, N. V. (2010) Vaccination with peptide 173-193 of acetylcholine receptor α7-subunit prevents memory loss in olfactory bulbectomized mice, J. Alzheimer’s Dis., 21, 249–261.CrossRefGoogle Scholar
  107. 107.
    Bobkova, N. V., Kamynina, A. V., Medvinskaya, N. I., Koroev, D. O., Nesterova, I. V., Aleksandrova, I. J., Samokhin, A. N., Volkova, T. D., and Volpina, O. M. (2009) Influence of passive immunization with antibodies to the extracellular fragment of α7-ACHR on the Alzheimer’s type neurodegenerative process, Vestn. Nov. Med. Tekhnol., 16, 214–216.Google Scholar
  108. 108.
    Koliatsos, V. E., Dawson, T. M., Kecojevic, A., Zhou, Y., Wang, Y. F., and Huang, K. X. (2004) Cortical interneurons become activated by deafferentation and instruct the apoptosis of pyramidal neurons, Proc. Natl. Acad. Sci. USA, 101, 14264–14269.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bobkova, N. V., Nesterova, I. V., Dana, R., Dana, E., Nesterov, V. I., Aleksandrova, I. Y., Medvinskaya, N. I., and Samokhin, A. N. (2004) Morphofunctional changes in neurons in the temporal cortex of the brain in relation to spatial memory in bulbectomized mice after treatment with mineral ascorbates, Neurosci. Behav. Physiol., 34, 671–676.PubMedCrossRefGoogle Scholar
  110. 110.
    Han, F., Shioda, N., Moriguchi, S., Qin, Z.-H., and Fukunaga, K. (2008) The vanadium (IV) compound rescues septo-hippocampal cholinergic neurons from neu-rodegeneration in olfactory bulbectomized mice, Neuroscience, 151, 671–679.PubMedCrossRefGoogle Scholar
  111. 111.
    Broekkamp, C. L., O’Connor, W. T., Tonnaer, J. A., Rijk, H. W., and Van Delet, A. M. (1986) Corticosterone, choline acetyltransferase and noradrenaline levels in olfactory bulbectomized rats in relation to changes in passive avoidance acquisition and open field activity, Physiol. Behav., 37, 429–434.PubMedCrossRefGoogle Scholar
  112. 112.
    Bobkova, N., Vorobyov, V., Medvinskaya, N., Nesterova, I., Tatarnikova, O., Nekrasov, P., Samokhin, A., Deev, A., Sengpiel, F., Koroev, D., and Volpina, O. (2016) Immunization against specific fragments of neurotrophin p75 receptor protects forebrain cholinergic neurons in the olfac-tory bulbectomized mice, J. Alzheimer’s Dis., 53, 289–301.CrossRefGoogle Scholar
  113. 113.
    Beck, M., Bigl, V., and Rossner, S. (2003) Guinea pigs as a nontransgenic model for APP processing in vitro and in vivo, Neurochem. Res., 28, 637–644.PubMedCrossRefGoogle Scholar
  114. 114.
    Battaglia, F., Wang, H. Y., Ghilardi, M. F., Gashi, E., Quartarone, A., Friedman, E., and Nixon, R. A. (2007) Cortical plasticity in Alzheimer’s disease in humans and rodents, Biol. Psychiatry, 62, 1405–1412.PubMedCrossRefGoogle Scholar
  115. 115.
    Reddy, P. H., Mani, G., Park, B. S., Jacques, J., Murdoch, G., Whetsell, W., Jr., Kaye, J., and Manczak, M. (2005) Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction, J. Alzheimer’s Dis., 7, 103–117.CrossRefGoogle Scholar
  116. 116.
    Novoselova, E. B., Bobkova, N. V., Sinotova, O. A., Ogai, V. B., Glushkova, E. B., Medvinskaya, N. I., and Samokhin, A. N. (2003) The immune status of bulbectomized mice, Dokl. Biol. Sci., 393, 505–507.PubMedCrossRefGoogle Scholar
  117. 117.
    Wynn, Z. J., and Cummings, J. L. (2004) Cholinesterase inhibitor therapies and neuropsychiatric manifestations of Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 17, 100–108.PubMedCrossRefGoogle Scholar
  118. 118.
    Yamamoto, T., Jin, J., and Watanabe, S. (1997) Characteristics of memory dysfunction in olfactory bulbectomized rats and the effects of cholinergic drugs, Behav. Brain Res., 83, 57–62.PubMedCrossRefGoogle Scholar
  119. 119.
    Upton, N., Chuang, T. T., Hunter, A. J., and Virley, D. J. (2008) 5-HT(6) receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease, Neurotherapeutics, 5, 458–469.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Avetisyan, A. V., Samokhin, A. N., Alexandrova, I. Y., Zinovkin, R. A., Simonyan, R. A., and Bobkova, N. V. (2016) Mitochondrial dysfunction in neocortex and hippocampus of olfactory bulbectomized mice, a model of Alzheimer’s disease, Biochemistry (Moscow), 81, 615–623.CrossRefGoogle Scholar
  121. 121.
    Smith, D. H., Chen, X. H., Iwata, A., and Graham, D. I. (2003) Amyloid beta accumulation in axons after traumatic brain injury in humans, J. Neurosurg., 8, 1072–1077.CrossRefGoogle Scholar
  122. 122.
    Selkoe, D. (2001) Alzheimer’s disease: genes, proteins, and therapy, Physiol. Rev., 81, 741–766.PubMedGoogle Scholar
  123. 123.
    Vetrivel, K. S., and Thinakaran, G. (2006) Amyloidogenic processing of beta-amyloid precursor protein in intracellu-lar compartments, Neurology, 66, 69–73.CrossRefGoogle Scholar
  124. 124.
    Chyung, J. H., and Selkoe, D. J. (2003) Inhibition of receptor-mediated endocytosis demonstrates generation of amyloid β-protein at the cell surface, J. Biol. Chem., 278, 51035–51043.PubMedCrossRefGoogle Scholar
  125. 125.
    Marin, N., Romero, B., Bosch-Morell, F., Llansola, M., Felipo, V., Roma, J., and Romero, F. J. (2000) Beta-amyloid-induced activation of caspase-3 in primary cultures of rat neurons, Mech. Ageing Dev., 119, 63–67.PubMedCrossRefGoogle Scholar
  126. 126.
    Pentzek, M., Grass-Kapanke, B., and Ihl, R. (2007) Odor identification in Alzheimer’s disease and depression, Aging Clin. Exp. Res., 19, 255–258.PubMedCrossRefGoogle Scholar
  127. 127.
    Song, C., and Leonard, B. E. (2005) The olfactory bulbectomized rat as a model of depression, Neurosci. Biobeh. Rev., 29, 627–647.CrossRefGoogle Scholar
  128. 128.
    Meyerson, L. R., Wennogle, L. P., Abel, M. S., Coupet, J., Lippa, A. S., Rauh, C. E., and Beer, B. (1982) Human brain receptor alterations in suicide victims, Pharmacol. Biochem. Behav., 17, 159–163.PubMedCrossRefGoogle Scholar
  129. 129.
    Otmakhova, N. A., Gurevich, E. V., Katkov, Y. A., Nesterova, I. V., and Bobkova, N. V. (1992) Dissociation of multiple behavioral effects between olfactory bulbectomized C57Bl/6J and DBA/2J mice, Physiol. Behav., 52, 441–448.PubMedCrossRefGoogle Scholar
  130. 130.
    Gurevich, E. V., Aleksandrova, I. A., Otmakhova, N. A., Katkov, Y. A., Nesterova, I. V., and Bobkova, N. V. (1993) Effects of bulbectomy and subsequent antidepressant treatment on brain 5-HT2 and 5-HT1A receptors in mice, Pharmacol. Biochem. Behav., 45, 65–70.PubMedCrossRefGoogle Scholar
  131. 131.
    Sheline, Y. I., West, T., Yarasheski, K., Swarm, R., Jasielec, M. S., Fisher, J. R., Ficker, W. D., Yan, P., Xiong, C., Frederiksen, C., Grzelak, M. V., Chott, R., Bateman, R. J., Morris, J. C., Mintun, M. A., Lee, J. M., and Cirrito, J. R. (2014) An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice, Sci. Transl. Med., 14, 236.Google Scholar
  132. 132.
    Marine, N., and Boriana, A. (2014) Olfactory markers of depression and Alzheimer’s disease, Neurosci. Biobehav. Rev., 45, 262–270.PubMedCrossRefGoogle Scholar
  133. 133.
    Djordjevic, J., Jones-Gotman, M., De Sousa, K., and Chertkow, H. (2008) Olfaction in patients with mild cognitive impairment and Alzheimer’s disease, Neurobiol. Aging, 29, 693–706.PubMedCrossRefGoogle Scholar
  134. 134.
    Saiz-Sanchez, D., De La Rosa-Prieto, C., Ubeda-Banon, I., and Martinez-Marcos, A. (2013) Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer’s disease, Anat. Rec., 296, 1413–1423.CrossRefGoogle Scholar
  135. 135.
    Saiz-Sanchez, D., Flores-Cuadrado, A., Ubeda-Banon, I., De la Rosa-Prieto, C., and Martinez-Marcos, A. (2016) Interneurons in the human olfactory system in Alzheimer’s disease, Exp. Neurol., 276, 13–21.PubMedCrossRefGoogle Scholar
  136. 136.
    Wu, N., Rao, X., Gao, Y., Wang, J., and Xu, F. (2013) Amyloid-β deposition and olfactory dysfunction in an Alzheimer’s disease model, J. Alzheimer’s Dis., 37, 699–712.Google Scholar
  137. 137.
    Zelaya, M. V., Perez-Valderrama, E., De Morentin, X. M., Tunon, T., Ferrer, I., Luquin, M. R., Fernandez-Irigoyen, J., and Santamaria, E. (2015) Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer’s disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies, Oncotarget, 24, 39437–39456.CrossRefGoogle Scholar
  138. 138.
    Doorn, K. J., Goudriaan, A., Blits-Huizinga, C., Bol, J. G., Rozemuller, A. J., Hoogland, P. V., Lucassen, P. J., Drukarch, B., Van de Berg, W. D., and Van Dam, A. M. (2014) Increased amoeboid microglial density in the olfactory bulb of Parkinson’s and Alzheimer’s patients, Brain Pathol., 24, 152–165.PubMedCrossRefGoogle Scholar
  139. 139.
    Morley, J. E., Armbrecht, H. J., Farr, S. A., and Kumar, V. B. (2012) The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease, Biochim. Biophys. Acta, 1822, 650–656.PubMedCrossRefGoogle Scholar
  140. 140.
    Ito, K. (2013) Frontiers of model animals for neuro-science: two prosperous aging model animals for promot-ing neuroscience research, Exp. Anim., 62, 275–280.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kolosova, N. G., Stefanova, N. A., Korbolina, E. E., Fursova, A. Z., and Kozhevnikova, O. S. (2014) Senescence-accelerated OXYS rats: a genetic model of premature aging and age-related diseases, Adv. Gerontol., 4, 294–298.CrossRefGoogle Scholar
  142. 142.
    Beregovoy, N. A., Sorokina, N. S., Starostina, M. V., and Kolosova, N. G. (2011) Age-specific peculiarities of formation of long-term post-tetanic potentiation in OXYS rats, Bull. Exp. Biol. Med., 151, 71–73.PubMedCrossRefGoogle Scholar
  143. 143.
    Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., Maksimova, K. Y., Logvinov, S. V., Rudnitskaya, E. A., Korbolina, E. E., Muraleva, N. A., and Kolosova, N. G. (2014) Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer’s disease, Cell Cycle, 13, 898–909.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014) Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimer’s Dis., 38, 681–694.Google Scholar
  145. 145.
    Stefanova, N. A., Muraleva, N. A., Maksimova, K. Y., Rudnitskaya, E. A., Kiseleva, E., Telegina, D. V., and Kolosova, N. G. (2016) An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s dis-ease-like pathology, Aging (Albany NY), 11, 2713–2733.CrossRefGoogle Scholar
  146. 146.
    Kolosova, N. G., Tyumentsev, M. A., Muraleva, N. A., Kiseleva, E. V., Vitovtov, A. O., and Stefanova, N. A. (2017) Antioxidant SkQ1 alleviates signs of Alzheimer’s disease-like pathology in old OXYS rats by reversing mito-chondrial deterioration, Curr. Alzheimer Res., doi: 10.2174/1567205014666170621111033.Google Scholar
  147. 147.
    Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014) Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimer’s Dis., 38, 681–694.Google Scholar
  148. 148.
    Stefanova, N. A., Korbolina, E. E., Ershov, N. I., Rogaev, E. I., and Kolosova, N. G. (2015) Changes in the transcriptome of the prefrontal cortex of OXYS rats as the signs of Alzheimer’s disease development, Vavilov J. Genet. Breed., 19, 74–82.CrossRefGoogle Scholar
  149. 149.
    Stefanova, N. A., Muraleva, N. A., Korbolina, E. E., Kiseleva, E., Maksimova, K., and Kolosova, N. G. (2015) Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 6, 1396–1413.PubMedCrossRefGoogle Scholar
  150. 150.
    Swerdlow, R. H., and Khan, S. M. (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease, Med. Hypotheses, 63, 8–20.PubMedCrossRefGoogle Scholar
  151. 151.
    Gerschutz, A., Heinsen, H., and Grunblatt, E., Wagner, A. K., Bartl, J., Meissner, C., Fallgatter, A. J., Al-Sarray, S., Troakes, C., Ferrer, I., Arzberger, N., Deckert, J., Riederer, P., Fischer, T., Tatschner, T., and Monoranu, C. M. (2013) Neuron-specific mitochondrial DNA deletion levels in sporadic Alzheimer’s disease, Curr. Alzheimer Res., 10, 1041–1046.PubMedCrossRefGoogle Scholar
  152. 152.
    Loshchenova, P. S., Sinitsyna, O. I., Fedoseeva, L. A., Stefanova, N. A., and Kolosova, N. G. (2015) Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence accelerated OXYS rats, Biochemistry (Moscow), 80, 596–603.CrossRefGoogle Scholar
  153. 153.
    Mawuenyega, K. G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J. C., Yarasheski, K. E., and Bateman, R. J. (2013) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease, Science, 330, 1774.CrossRefGoogle Scholar
  154. 154.
    Kanemitsu, H., Tomiyama, T., and Mori, H. (2003) Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form, Neurosci. Lett., 350, 113–116.PubMedCrossRefGoogle Scholar
  155. 155.
    Rudnitskaya, E. A., Maksimova, K. Y., Muraleva, N. A., Logvinov, S. V., Yanshole, L. V., Kolosova, N. G., and Stefanova, N. A. (2015) Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease, Biogerontology, 16, 303–316.PubMedCrossRefGoogle Scholar
  156. 156.
    Rudnitskaya, E. A., Muraleva, N. A., Maksimova, K. Y., Kiseleva, E., Kolosova, N. G., and Stefanova, N. A. (2015) Melatonin attenuates memory impairment, amyloid-β accumulation, and neurodegeneration in a rat model of sporadic Alzheimer’s disease, J. Alzheimer’s Dis., 47, 103–116.CrossRefGoogle Scholar
  157. 157.
    Fefanova, N. A., Maksimova, K. Y., Kiseleva, E., Rudnitskaya, E. A., Muraleva, N. A., and Kolosova, N. G. (2015) Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology, J. Pineal. Res., 59, 163–177.CrossRefGoogle Scholar
  158. 158.
    Tan, D. X., Manchester, L. C., Qin, L., and Reiter, R. J. (2016) Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics, Int. J. Mol. Sci., 16, 17.Google Scholar
  159. 159.
    Rudnitskaya, E. A., Kolosova, N. G., and Stefanova, N. A. (2017) Impact of changes in neurotrophic supplementation on development of Alzheimer’s disease-like pathology in OXYS rats, Biochemistry (Moscow), 82, 318–329.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. V. Gulyaeva
    • 1
  • N. V. Bobkova
    • 2
  • N. G. Kolosova
    • 3
  • A. N. Samokhin
    • 2
  • M. Yu. Stepanichev
    • 1
  • N. A. Stefanova
    • 3
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  3. 3.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations