Skip to main content
Log in

Enzymes regulated via cystathionine β-synthase domains

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cystathionine β-synthase (CBS) domains discovered 20 years ago can bind different adenosine derivatives (AMP, ADP, ATP, S-adenosylmethionine, NAD, diadenosine polyphosphates) and thus regulate the activities of numerous proteins. Mutations in CBS domains of enzymes and membrane transporters are associated with several hereditary diseases. The regulatory unit is a quartet of CBS domains that belong to one or two polypeptides and usually form a conserved disk-like structure. CBS domains function as “internal inhibitors” in enzymes, and their bound ligands either amplify or attenuate the inhibitory effect. Recent studies have opened a way to understanding the structural basis of enzyme regulation via CBS domains and widened the list of their bound ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AdoMet:

S-adenosyl-L-methionine

AID:

auto-inhibitory domain

AMPK:

AMP-activated protein kinase

CBS:

cystathionine β-synthase

dCBS:

Drosophila melanogaster CBS

hCBS:

human CBS

yCBS:

yeast Saccharomyces cerevisiae CBS

IMPDH:

inosine-5′-monophosphate dehydroge-nase

MTA:

5′-methylthioadenosine

References

  1. Bateman, A. (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein, Trends Biochem. Sci., 22, 12–13.

    Article  CAS  PubMed  Google Scholar 

  2. Scott, J. W., Hawley, S. A., Green, K. A., Anis, M., Stewart, G., Scullion, G. A., Norman, D. G., and Hardie, D. G. (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutation, J. Clin. Invest., 113, 274–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ereсo-Orbea, J., Oyenarte, I., and Martнnez-Cruz, L. A. (2013) CBS domains: ligand binding sites and conformational variability, Arch. Biochem. Biophys., 540, 70–81.

    Article  Google Scholar 

  4. Hedstrom, L. (2009) IMP dehydrogenase: structure, mechanism and inhibition, Chem. Rev., 109, 2903–2928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aguado-Llera, D., Oyenarte, I., Martнnez-Cruz, L. A., and Neira, J. L. (2010) The CBS domain protein MJ0729 of M. jannaschii binds DNA, FEBS Lett., 584, 4485–4489.

    Article  CAS  PubMed  Google Scholar 

  6. Baykov, A. A., Tuominen, H. K., and Lahti, R. (2011) The CBS domain: a protein module with an emerging prominent role in regulation, ACS Chem. Biol., 6, 1156–1163.

    Article  CAS  PubMed  Google Scholar 

  7. Huang, C. W., and Moore, P. K. (2015) H2S synthesizing enzymes: biochemistry and molecular aspects, in Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide (Moore, P. K., and Whiteman, M., eds.) Handb. Exp. Pharmacol., 230, 3–25.

    Article  CAS  PubMed  Google Scholar 

  8. Kery, V., Poneleit, L., and Kraus, J. P. (1998) Trypsin cleavage of human cystathionine β-synthase into an evolutionarily conserved active core: structural and functional consequences, Arch. Biochem. Biophys., 355, 222–232.

    Article  CAS  PubMed  Google Scholar 

  9. Jhee, K. H., McPhie, P., and Miles, E. W. (2000) Domain architecture of the heme independent yeast cystathionine β-synthase provides insights into mechanisms of catalysis and regulation, Biochemistry, 39, 10548–10556.

    Article  CAS  PubMed  Google Scholar 

  10. Majtan, T., Pey, A. L., Fernandez, R., Fernandez, J. A., Martнnez-Cruz, L. A., and Kraus, J. P. (2014) Domain organization, catalysis and regulation of eukaryotic cystathionine beta-synthases, PLoS One, 14, e105290.

    Article  Google Scholar 

  11. Ereсo-Orbea, J., Majtan, T., Oyenarte, I., Kraus, J. P., and Martнnez-Cruz, L. A. (2013) Structural basis of regulation and oligomerization of human cystathionine β-synthase, the central enzyme of transsulfuration, Proc. Natl. Acad. Sci. USA, 110, 3790–3799.

    Article  Google Scholar 

  12. Koutmos, M., Kabil, O., Smith, J. L., and Banerjee, R. (2010) Structural basis for substrate activation and regulation by cystathionine β-synthase (CBS) domains in cystathionine β-synthase, Proc. Natl. Acad. Sci. USA, 107, 20958–20963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oliveriusova, J., Kery, V., Maclean, K. N., and Kraus, J. P. (2002) Deletion mutagenesis of human cystathionine β-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation, J. Biol. Chem., 277, 48386–48394.

    Article  CAS  PubMed  Google Scholar 

  14. Maclean, K. N., Janosik, M., Oliveriusova, J., Kery, V., and Kraus, J. P. (2000) Transsulfuration in Saccharomyces cerevisiae is not dependent on heme: purification and characterization of recombinant yeast cystathionine β-synthase, J. Inorg. Biochem., 81, 161–171.

    Article  CAS  PubMed  Google Scholar 

  15. Su, Y., Majtan, T., Freeman, K. M., Linck, R., Ponter, S., Kraus, J. P., and Burstyn, J. N. (2013) Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine β-synthases, Biochemistry, 52, 741–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taoka, S., Widjaja, L., and Banerjee, R. (1999) Assignment of enzymatic functions to specific regions of the PLP-dependent heme protein cystathionine β-synthase, Biochemistry, 38, 13155–13161.

    Article  CAS  PubMed  Google Scholar 

  17. Pey, A. L., Majtan, T., Sanchez-Ruiz, J. M., and Kraus, J. P. (2013) Human cystathionine β-synthase (CBS) contains two classes of binding sites for S-adenosylmethionine (SAM): complex regulation of CBS activity and stability by SAM, Biochem. J., 449, 109–121.

    Article  CAS  PubMed  Google Scholar 

  18. Ereсo-Orbea, J., Majtan, T., Oyenarte, I., Kraus, J. P., and Martнnez-Cruz, L. A. (2014) Structural insight into the molecular mechanism of allosteric activation of human cystathionine β-synthase by S-adenosylmethionine, Proc. Natl. Acad. Sci. USA, 111, E3845–E3852.

    Article  Google Scholar 

  19. Weber, G., Nakamura, H., Natsumeda, Y., Szekeres, T., and Nagai, M. (1992) Regulation of GTP biosynthesis, Adv. Enzyme Regul., 32, 57–69.

    Article  CAS  PubMed  Google Scholar 

  20. Labesse, G., Alexandre, T., Vaupre, L., Salard-Arnaud, I., Him, J. L., Raynal, B., Bron, P., and Munier-Lehmann, H. (2013) MgATP regulates allostery and fiber formation in IMPDHs, Structure, 21, 975–985.

    Article  CAS  PubMed  Google Scholar 

  21. Alexandre, T., Raynal, B., and Munier-Lehmann, H. (2015) Two classes of bacterial IMPDHs according to their quaternary structures and catalytic properties, PLoS One, 10, e0116578.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buey, R. M., Ledesma-Amaro, R., Velazquez-Campoy, A., Balsera, M., Chagoyen, M., De Pereda, J. M., and Revuelta, J. L. (2015) Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases, Nat. Commun., 6, 1–11.

    Article  Google Scholar 

  23. Smith, S., Boitz, J., Chidambaram, E. S., Chatterjee, A., Ait-Tihyaty, M., Ullman, B., and Jardim, A. (2016) The cystathionine-β-synthase domains on the guanosine 5′-monophosphate reductase and inosine 5′-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels, Mol. Microbiol., 100, 824–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corton, J. M., Gillespie, J. G., and Hardie, D. G. (1994) Role of the AMP-activated protein kinase in the cellular stress response, Curr. Biol., 4, 315–324.

    Article  CAS  PubMed  Google Scholar 

  25. Kemp, B. E., Stapleton, D., Campbell, D. J., Chen, Z. P., Murthy, S., Walter, M., Gupta, A., Adams, J. J., Katsis, F., Van Denderen, B., Jennings, I. G., Iseli, T., Michell, B. J., and Witters, L. A. (2003) AMP-activated protein kinase, super metabolic regulator, Biochem. Soc. Trans., 31, 162–168.

    Article  CAS  PubMed  Google Scholar 

  26. Adams, J., Chen, Z. P., Van Denderen, B. J., Morton, C. J., Parker, M. W., Witters, L. A., Stapleton, D., and Kemp, B. E. (2004) Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site, Protein Sci., 13, 155–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, L., Wang, J., Zhang, Y. Y., Yan, S. F., Neumann, D., Schlattner, U., Wang, Z. X., and Wu, J. W. (2012) AMP-activated protein kinase undergoes nucleotide-dependent conformational changes, Nat. Struct. Mol. Biol., 19, 716–718.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao, B., Heath, R., Saiu, P., Leiper, F. C., Leone, P., Jing, C., Walker, P. A., Haire, L., Eccleston, J. F., Davis, C. T., Martin, S. R., Carling, D., and Gamblin, S. J. (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase, Nature, 449, 496–500.

    Article  CAS  PubMed  Google Scholar 

  29. Xiao, B., Sanders, M. J., Underwood, E., Heath, R., Mayer, F. V., Carmena, D., Jing, C., Walker, P. A., Eccleston, J. F., Haire, L. F., Saiu, P., Howell, S. A., Aasland, R., Martin, S. R., Carling, D., and Gamblin, S. J. (2011) Structure of mammalian AMPK and its regulation by ADP, Nature, 472, 230–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gowans, G. J., Hawley, S. A., Ross, F. A., and Hardie, D. G. (2013) AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation, Cell Metab., 18, 556–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Witczak, C. A., Sharoff, C. G., and Goodyear, L. J. (2008) AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism, Cell. Mol. Life Sci., 65, 3737–3755.

    Article  CAS  PubMed  Google Scholar 

  32. Xiao, B., Sanders, M. J., Carmena, D., Bright, N. J., Haire, L. F., Underwood, E., Patel, B. R., Heath, R. B., Walker, P. A., Hallen, S., Giordanetto, F., Martin, S. R., Carling, D., and Gamblin, S. J. (2013) Structural basis of AMPK regulation by small molecule activators, Nat. Commun., 4, 3017.

    PubMed  PubMed Central  Google Scholar 

  33. Calabrese, M. F., Rajamohan, F., Harris, M. S., Caspers, N. L., Magyar, R., Withka, J. M., Wang, H., Borzilleri, K. A., Sahasrabudhe, P. V., Hoth, L. R., Geoghegan, K. F., Han, S., Brown, J., Subashi, T. A., Reyes, A. R., Frisbie, R. K., Ward, J., Miller, R. A., Landro, J. A., Londregan, A. T., Carpino, P. A., Cabral, S., Smith, A. C., Conn, E. L., Cameron, K. O., Qiu, X., and Kurumbail, R. G. (2014) Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms, Structure, 22, 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  34. Li, X., Wang, L., Zhou, X. E., Ke, J., De Waal, P. W., Gu, X., Tan, M. H., Wang, D., Wu, D., Xu, H. E., and Melcher, K. (2015) Structural basis of AMPK regulation by adenine nucleotides and glycogen, Cell Res., 25, 50–66.

    Article  PubMed  Google Scholar 

  35. Li, J., Li S., Wang, F., and Xin, F. (2017) Structural and biochemical insights into the allosteric activation mechanism of AMP-activated protein kinase, Chem. Biol. Drug Des., 89, 663–669.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Baykov.

Additional information

Original Russian Text © V. A. Anashkin, A. A. Baykov, R. Lahti, 2017, published in Biokhimiya, 2017, Vol. 82, No. 10, pp. 1417-1426.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anashkin, V.A., Baykov, A.A. & Lahti, R. Enzymes regulated via cystathionine β-synthase domains. Biochemistry Moscow 82, 1079–1087 (2017). https://doi.org/10.1134/S0006297917100017

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917100017

Keywords

Navigation