Skip to main content
Log in

Reason for indispensability of threonine in humans and other mammals in comparative aspect

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The essential amino acid threonine is not synthesized in vertebrates, so it must be obtained from food. During evolution, the decomposition of threonine has changed. Because the decomposition of threonine catalyzed by threonine dehydratase is irreversible, in the present work attention is focused on threonine dehydrogenase to show the inability of this enzyme to synthesize threonine in a reaction that would be the reverse of the reaction of threonine decomposition. The reason why threonine dehydrogenase cannot be used for the biosynthesis of threonine in mammalian tissues is discussed. It is concluded that some quantity of threonine is involved in transamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elliott, D. F., and Neuberger, A. (1950) The irreversibility of the deamination of threonine in the rabbit and rat, Biochem. J., 46, 207–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meltzer, H. L., and Sprinson, D. B. (1952) The synthesis of 4-C14, N15-L-threonine and a study of its metabolism, J. Biol. Chem., 197, 461–473.

    CAS  PubMed  Google Scholar 

  3. Gardino-Franko, M., Ehlert, S., Messerschmidt, A., Marinkovic, S., Huber, R., Laber, B., Bourenkov, G., and Clausen, T. (2002) Structure and function of threonine synthase from yeast, J. Biol. Chem., 277, 12396–12405.

    Article  Google Scholar 

  4. Donini, S., Percudani, R., Credali, A., Montanini, B., Sartori, A., and Peracchi, A. (2006) A threonine synthase homolog from a mammalian genome, Biochem. Biophys. Res. Commun., 350, 922–928.

    Article  CAS  PubMed  Google Scholar 

  5. Dagley, S., and Nickolson, D. (1973) Metabolic Pathways [Russian translation], Mir, Moscow.

    Google Scholar 

  6. Berezov, T. T., and Korovkin, B. F. (2004) Biological Chemistry [in Russian], Meditsina, Moscow.

    Google Scholar 

  7. Neuberger, A. (1981) Glycine formation from L-threonine, Comp. Biochem., 19A, 257–303.

    CAS  Google Scholar 

  8. Devlin, T. M. (1982) Textbook of Biochemistry, John Wiley and Sons, New York.

    Google Scholar 

  9. Leninger, A. L. (1975) Biochemistry, Worth Publishers, New York.

    Google Scholar 

  10. Bird, M. I., and Nunn, P. B. (1979) Measurement of L-threonine aldolase activity in rat liver, Biochem. Soc. Trans., 7, 1274–1276.

    Article  CAS  PubMed  Google Scholar 

  11. Bird, M. I., and Nunn, P. B. (1983) Metabolic homeostasis of L-threonine in the normally-fed rat, Biochem. J., 214, 687–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeung, Y. G. (1986) Threonine aldolase is not a genuine enzyme in rat liver, Biochem. J., 237, 187–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pagani, R. (1991) DL-allothreonine and L-threonine aldolase in rat liver, Biochem. Soc. Trans., 19, 3465.

    Google Scholar 

  14. Darling, P. B., Grunov, J., Rafii, M., Brookes, S., Ball, R. O., and Pencharz, P. B. (2000) Threonine dehydrogenase is a minor degradative pathway of threonine catabolism in adult humans, Am. J. Physiol. Endocrinol. Metab., 278, 877–884.

    Google Scholar 

  15. West, H. D., and Carter, H. E. (1938) Synthesis of α-aminoβ-hydroxyl-n-butyric acids, J. Biol. Chem., 122, 611–617.

    CAS  Google Scholar 

  16. Karasek, M. A., and Greenberg, D. M. (1957) Studies on the properties of threonine aldolases, J. Biol. Chem., 227, 191–205.

    CAS  PubMed  Google Scholar 

  17. Malkin, L. I., and Greenberg, D. M. (1964) Purification and properties of threonine or allothreonine aldolases, Biochim. Biophys. Acta, 85, 117–131.

    CAS  PubMed  Google Scholar 

  18. Pagani, R., Guerranti, R., Leoncini, R., and Marinello, E. (1990) Activation and inhibition of rat liver L-threonine dehydrogenase, Ital. J. Biochem., 39, 108.

    Google Scholar 

  19. Pagani, R., Guerranti, R., Righi, S., Leoncini, R., Vannoni, D., and Marinello, E. (1992) Rat liver L-threonine dehydrogenase, Biochem. Soc. Trans., 20, 245.

    Article  Google Scholar 

  20. Green, M. L., and Elliott, W. H. (1964) The enzymic formation of aminoacetone from threonine and its further metabolism, Biochem. J., 92, 537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wallace, C. J. A., and Hedges, P. E. M. (2016) Nitrogen isotopic discrimination in dietary amino acids: the threonine anomaly, Rapid Commun. Mass. Spectrom., 30, 2242–2246.

    Article  Google Scholar 

  22. Reef, W. D., Hay, S. M., and Antipatis, C. (2006) The effect of dietary protein on the amino acid supply and threonine metabolism in the pregnant rat, Reprod. Nutr. Dev., 46, 227–239.

    Article  Google Scholar 

  23. Ballevre, O., Cadenhead, A., Calder, A. G., Ress, W. D., Lobley, G. E., Fuller, M. F., and Garlick, P. J. (1990) Quantitative partition of threonine oxidation in pigs: effect of dietary threonine, Am. J. Physiol., 259, 483–491.

    Google Scholar 

  24. Le Floc’h, N., Seve, B., and Henry, Y. (1994) The addition of glutamic acid or protein to a threonine-deficient diet differentially affects growth performance and threonine dehydrogenase activity in fattening pigs, J. Nutr., 124, 1087–1095.

    Google Scholar 

  25. Moundras, C., Bercovici, D., Remesy, C., and Demigne, C. (1992) Influence of glucogenic amino acids on the hepatic metabolism of threonine, Biochim. Biophys. Acta, 1115, 212–219.

    Article  CAS  PubMed  Google Scholar 

  26. Linstead, D. J., Klein, R. A., and Cross, G. A. M. (1977) Threonine Microbiology, pp. 243–251.

    Google Scholar 

  27. Steven, L., MeKnight, D., and Wang, J. (2012) Stem cells modified to facilitate threonine catabolism, Patent No. US8, 288, 158 B2, Oct. 16, 2012.

    Google Scholar 

  28. Chuanchin, H., Hao, G., Jiaxu, W., Weiguang, L., Yide, M., and Mian, W. (2013) Regulation of L-threonine dehydrogenase in somatic cell reprogramming, Stem Cells, 31, 953–965.

    Article  Google Scholar 

  29. Winkle, L. J. V., Gallat, V., and Iannaccone, P. M. (2014) Threonine appears to be essential for proliferation of human as well as mouse embryonic stem cells, Cell Dev. Biol., doi: 10.3389/fcell.2014.00018.

    Google Scholar 

  30. Shyh-Chang, N., Locasale, J. W., Lyssiotis, C. A., Zheng, Y., Teo, R. Y., Ratanasirintrawoot, S., Zhang, J., Onder, T., Unternaehrer, J. J., Zhu, H., Asara, J. M., Daley, G. Q., and Cantley, L. C. (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation, Science, 339, 222–226.

    Article  PubMed  Google Scholar 

  31. Aoyama, Y., and Motokava, Y. (1981) L-threonine dehydrogenase of chicken liver, Biol. Chem., 256, 12367.

    CAS  Google Scholar 

  32. Tressel, J., Thompson, R., Zieske, L. R., Menendez, J. S., and Davis, L. (1986) Interaction between L-threonine dehydrogenase and aminoacetone synthetase and mechanism of aminoacetone production, J. Biol. Chem., 261, 16428–16437.

    CAS  PubMed  Google Scholar 

  33. Eubara, B., Eckenrode, F., Tresse, T., and Davis, L. (1986) Purification and properties of aminoacetone synthetase from beef liver mitochondria, J. Biol. Chem., 261, 12189–12196.

    Google Scholar 

  34. Bender, D. A. (2012) Amino Acid Metabolism, doi: 10.1002/9781118357514.ch4.

    Book  Google Scholar 

  35. Laver, W. G., Neuberger, A., and Scott, J. J. (1959) αAmino-β-keto: acids. II. Rates of decarboxylation of the free acids and the behavior of derivatives on titration, J. Chem. Soc., 1483–1491.

    Google Scholar 

  36. Guerranti, R., Pagani, R., Neri, S., Errico, S. V., Leoncini, R., and Marinello, E. (2001) Inhibition and regulation of rat liver L-threonine dehydrogenase by different fatty acids and their derivatives, Biochim. Biophys. Acta, 1568, 45–52.

    Article  CAS  PubMed  Google Scholar 

  37. Chapman, K. (2011) The Impact of the Splanchnic Bed on the Dietary Requirements of Threonine and Lysine in Humans, University of Toronto.

    Google Scholar 

  38. Zhao, X. H., Wen, Z. M., Meredith, C. N., Matthews, D. E., Bier, D. M., and Young, V. R. (1986) Threonine kinetics at graded threonine intakes in young men, Am. J. Clin. Nutr., 43, 795–802.

    CAS  PubMed  Google Scholar 

  39. Growdon, J. H., Nader, T. M., Schoenfeld, J., and Wurtman, R. J. (1991) L-threonine in the treatment of spasticity, Clin. Neuropharmacol., 14, 403–412.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, A., and Patterson, V. (1993) Double-blind study of Lthreonine in patients with spinal spasticity, Acta Neurol. Scand., 88, 334–338.

    Article  CAS  PubMed  Google Scholar 

  41. Edgar, A. J. (2002) The human L-threonine-3-dehydrogenase gene is an expressed pseudogene, BMC Genet., 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Malinovsky.

Additional information

Original Russian Text © A. V. Malinovsky, 2017, published in Biokhimiya, 2017, Vol. 82, No. 9, pp. 1354-1360.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinovsky, A.V. Reason for indispensability of threonine in humans and other mammals in comparative aspect. Biochemistry Moscow 82, 1055–1060 (2017). https://doi.org/10.1134/S0006297917090097

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917090097

Keywords

Navigation