Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 9, pp 1042–1047 | Cite as

Quantitative affinity interaction of ubiquitinated and non-ubiquitinated proteins with proteasome subunit Rpn10

  • O. A. Buneeva
  • O. V. Gnedenko
  • A. T. Kopylov
  • M. V. Medvedeva
  • V. G. Zgoda
  • A. S. Ivanov
  • A. E. MedvedevEmail author
Article

Abstract

Recent proteomic profiling of mouse brain preparations using the ubiquitin receptor, Rpn10 proteasome subunit, as an affinity ligand revealed a representative group of proteins bound to this sorbent (Medvedev, A. E., et al. (2017) Biochemistry (Moscow), 82, 330-339). In the present study, we investigated interaction of the Rpn10 subunit of proteasomes with some of these identified proteins: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase, and histones H2A and H2B. The study revealed: (i) quantitative affinity interaction of the proteasome subunit immobilized on a Biacore-3000 optical biosensor cuvette with both the GAPDH (K d = 2.4·10–6 M) and pyruvate kinase (K d = 2.8·10–5 M); (ii) quantitative high-affinity interaction of immobilized histones H2A and H2B with the Rpn10 subunit (Kd values of 6.5·10–8 and 3.2·10–9 M, respectively). Mass spectrometric analysis revealed the presence of the ubiquitin signature (GG) only in a highly purified preparation of GAPDH. We suggest that binding (especially high-affinity binding) of non-ubiquitinated proteins to the Rpn10 proteasome subunit can both regulate the functioning of this proteasomal ubiquitin receptor (by competing with ubiquitinated substrates) and promote activation of other pathways for proteolytic degradation of proteins destined to the proteasome.

Keywords

Rpn10 proteasome subunit Rpn10-binding proteins optical biosensor ubiquitin signature 

Abbreviations

GAPDH

glyceraldehyde-3-phosphate dehydrogenase

Kd

equilibrium dissociation constant

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hershko, A., and Ciechanover, A. (1998) The ubiquitin system, Annu. Rev. Biochem., 67, 425–479.CrossRefPubMedGoogle Scholar
  2. 2.
    Hershko, A., Ciechanover, A., and Varshavsky, A. (2000) The ubiquitin system, Nature Med., 6, 1073–1081.CrossRefPubMedGoogle Scholar
  3. 3.
    Schwartz, A. L., and Ciechanover, A. (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology, Annu. Rev. Pharmacol. Toxicol., 49, 73–96.CrossRefPubMedGoogle Scholar
  4. 4.
    Kravtsova-Ivantsiv, Y., and Ciechanover, A. (2012) Noncanonical ubiquitin-based signals for proteasomal degradation, J. Cell Sci., 125, 539–548.CrossRefPubMedGoogle Scholar
  5. 5.
    Buneeva, O. A., and Medvedev, A. E. (2016) The role of atypical ubiquitination in cell regulation, Biomed. Khim., 62, 496–509.CrossRefPubMedGoogle Scholar
  6. 6.
    Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994) A 26S protease subunit that binds ubiquitin conjugates, J. Biol. Chem., 269, 7059–7061.PubMedGoogle Scholar
  7. 7.
    Hamazaki, J., Sasaki, K., Kawahara, H., Hisanaga, S., Tanaka, K., and Murata, S. (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development, Mol. Cell. Biol., 19, 6629–6638.CrossRefGoogle Scholar
  8. 8.
    Medvedev, A. E., Buneeva, O. A., Kopylov, A. T., Tikhonova, O. V., Medvedeva, M. V., Nerobkova, L. N., Kapitsa, I. G., and Zgoda, V. G. (2017) Brain mitochondrial subproteome of Rpn10-binding proteins and its changes induced by the neurotoxin MPTP and the neuroprotector isatin, Biochemistry (Moscow), 82, 330–339.CrossRefGoogle Scholar
  9. 9.
    Ivanov, A., Medvedev, A., Ershov, P., Molnar, A., Mezentsev, Y., Yablokov, E., Kaluzhsky, L., Gnedenko, O., Buneeva, O., Haidukevich, I., Sergeev, G., Lushchyk, A., Yantsevich, A., Medvedeva, M., Kozin, S., Popov, I., Novikova, S., Zgoda, V., Gilep, A., Usanov, S., Lisitsa, A., and Archakov, A. (2014) Protein interactomics based on direct molecular fishing on paramagnetic particles: practical realization and further SPR validation, Proteomics, 14, 2261–2274.CrossRefPubMedGoogle Scholar
  10. 10.
    Buneeva, O., Gnedenko, O., Zgoda, V., Kopylov, A., Glover, V., Ivanov, A., Medvedev, A., and Archakov, A. (2010) Isatin binding proteins of rat and mouse brain: proteomic identification and optical biosensor validation, Proteomics, 10, 23–37.CrossRefPubMedGoogle Scholar
  11. 11.
    Medvedev, A. E., Buneeva, O. A., Kopylov, A. T., Gnedenko, O. V., Medvedeva, M. V., Kozin, S. A., Ivanov, A. S., Zgoda, V. G., and Makarov, A. A. (2015) The effects of an endogenous non-peptide molecule isatin and hydrogen peroxide on proteomic profiling of rat brain amyloidbeta binding proteins: relevance to Alzheimer’s disease? Int. J. Mol. Sci., 16, 476–495.CrossRefGoogle Scholar
  12. 12.
    Scopes, R. K., and Stoter, A. (1982) Purification of all glycolytic enzymes from one muscle extract, Methods Enzymol., 90 (Pt. E), 479–490.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang, H., Walsh, S. T. R., and Parthun, M. R. (2008) Expanded binding specificity of the human histone chaperone NASP, Nucleic Acids Res., 36, 5763–5772.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Blumenfeld, N., Gonen, H., Mayer, A., Smith, C. E., Siegel, N. R., Schwartz, A. L., and Ciechanover, A. (1994) Purification and characterization of a novel species of ubiquitin-carrier protein, E2, that is involved in degradation of non-“N-end rule” protein substrates, J. Biol. Chem., 269, 9574–9581.PubMedGoogle Scholar
  15. 15.
    Jeon, H. B., Choi, E. S., Yoon, J. H., Hwang, J. H., Chang, J. W., Lee, E. K., Choi, H. W., Park, Z. Y., and Yoo, Y. J. (2007) A proteomics approach to identify the ubiquitinated proteins in mouse heart, Biochem. Biophys. Res. Commun., 357, 731–736.CrossRefPubMedGoogle Scholar
  16. 16.
    Schrader, E. K., Harstad, K. G., and Matouschek, A. (2009) Targeting proteins for degradation, Nat. Chem. Biol., 10, 815–822.CrossRefGoogle Scholar
  17. 17.
    Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J., and Finley, D. (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome, J. Biol. Chem., 279, 26817–26822.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. A. Buneeva
    • 1
  • O. V. Gnedenko
    • 1
  • A. T. Kopylov
    • 1
  • M. V. Medvedeva
    • 2
  • V. G. Zgoda
    • 1
  • A. S. Ivanov
    • 1
  • A. E. Medvedev
    • 1
    Email author
  1. 1.Orekhovich Institute of Biomedical ChemistryMoscowRussia
  2. 2.Lomonosov Moscow State UniversityBiological Faculty, o119991MoscowRussia

Personalised recommendations