Skip to main content
Log in

Interaction of cholera toxin B-subunit with human T-lymphocytes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this work, 125I-labeled cholera toxin B-subunit (CT-B) (specific activity 98 Ci/mmol) was prepared, and its high-affinity binding to human blood T-lymphocytes (K d = 3.3 nM) was determined. The binding of the 125I-labeled CT-B was inhibited by unlabeled interferon-α2 (IFN-α2), thymosin-α1 (TM-α1), and by the synthetic peptide LKEKK, which corresponds to sequences 16-20 of human TM-α1 and 131-135 of IFN-α2 (K i 0.8, 1.2, and 1.6 nM, respectively), but was not inhibited by the unlabeled synthetic peptide KKEKL with inverted sequence (K i > 1 μM). In the concentration range of 10-1000 nM, both CT-B and peptide LKEKK dose-dependently increased the activity of soluble guanylate cyclase (sGC) but did not affect the activity of membrane-bound guanylate cyclase. The KKEKL peptide tested in parallel did not affect sGC activity. Thus, the CT-B and peptide LKEKK binding to a common receptor on the surface of T-lymphocytes leads to an increase in sGC activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cGMP:

cyclic guanosine monophosphate

CT-B:

cholera toxin B-subunit

HPLC:

high performance liquid chromatography

IFN:

interferon

IL:

interleukin

iNOS:

inducible NO-synthase

K d :

equilibrium dissociation constant

K i :

inhibition constant

mGC:

membrane-bound guanylate cyclase

PMSF:

phenylmethylsulfonyl fluoride

sGC:

soluble guanylate cyclase

TM-α1:

thymosin-α1

References

  1. Zav’yalov, V. P., Navolotskaya, E. V., Abramov, V. M., Galaktionov, V. G., Isaev, I. S., Kaurov, O. A., Kozhich, A. T., Maiorov, V. A., Prusakov, A. N., Vasilenko, R. N., and Volodina, E. Y. (1991) The octapeptide corresponding to the region of the highest homology between α-interferon and thymosin-α1 effectively competes with both cytokines for common high-affinity receptors on murine thymocytes, FEBS Lett., 278, 187–189.

    Article  PubMed  Google Scholar 

  2. Zav’yalov, V. P., Navolotskaya, E. V., Vasilenko, R. N., Abramov, V. M., Volodina, E. Y., Roslovtseva, O. A., Prusakov, A. N., and Kaurov, O. A. (1995) The sequence 130-137 of human interferon-α2 is involved in the competition of interferon, prothymosin α and cholera toxin B subunit for common receptors on human fibroblasts, Mol. Immunol., 32, 425–431.

    Article  PubMed  Google Scholar 

  3. Navolotskaya, E. V., Zinchenko, D. V., Zolotarev, Y. A., Kolobov, A. A., and Lipkin, V. M. (2016) Binding of synthetic LKEKK peptide to human T-lymphocytes, Biochemistry (Moscow), 81, 871–875.

    Article  CAS  Google Scholar 

  4. Salacinski, P. R., McLean, C., Sykes, J. E., ClementJones, V. V., and Lowry, P. J. (1981) Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1, 3, 4, 6-tetrachloro-3 alpha, 6 alpha-diphenyl glycoluril (Iodogen), Anal. Biochem., 117, 136–146.

    Article  CAS  PubMed  Google Scholar 

  5. Boyum, A., Berg, T., and Blomhoff, R. (1983) in Iodinated Density Gradient Media–A Practical Approach (Rickwood, D., ed.) Oxford, pp. 147–170.

  6. Patel, D., Rubbi, C. P., and Rickwood, D. (1995) Separation of Tand B-lymphocytes from human peripheral blood mononuclear cells using density perturbation methods, Clin. Chim. Acta, 240, 187–193.

    Article  CAS  PubMed  Google Scholar 

  7. Pennock, B. E. (1973) A calculator for finding binding parameters from a Scatchard plot, Anal. Biochem., 56, 306–309.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, Y. C., and Prusoff, W. (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50% inhibition (IC50) of an enzymatic reaction, Biochem. Pharmacol., 22, 3099–3108.

    Article  CAS  PubMed  Google Scholar 

  9. Carpentieri, U., Minguell, J. J., and Gardner, F. H. (1981) Adenylate cyclase and guanylate cyclase activity in normal and leukemic human lymphocytes, Blood, 57, 975–978.

    CAS  PubMed  Google Scholar 

  10. Schultz, G., and Bohme, E. (1984) in Methods of Enzymatic Analysis, Verlag Chemie, Weinheim, Germany, pp. 379–389.

    Google Scholar 

  11. Southam, E. (2001) Measurement of cGMP and soluble guanylyl cyclase activity, Curr. Protoc. Toxicol., 10, 10.5.

    Google Scholar 

  12. Lowry, O. H., Rosebrough, N. J., Farr, O. L., and Randal, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265–275.

    CAS  PubMed  Google Scholar 

  13. Lonnroth, I., and Holmgren, J. (1973) Subunit structure of cholera toxin, J. Gen. Microbiol., 76, 417–427.

    Article  CAS  PubMed  Google Scholar 

  14. Merritt, E. A., Sarfaty, S., Akker, F. V. D., L’Hoir, C., Martial, J. A., and Hol, W. G. J. (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide, Protein Sci., 3, 166–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chester, M. A. (1998) IUPAC-IUB joint commission on biochemical nomenclature (JCBN). Nomenclature of glycolipids–recommendations 1997, Eur. J. Biochem., 257, 293–298.

    Article  CAS  PubMed  Google Scholar 

  16. Holmgren, J., Lonnroth, I., and Svennerholm, L. (1973) Tissue receptor for cholera exotoxin: postulated structure from studies with G Mganglioside and related glycolipids, Infect. Immun., 8, 208–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schoen, A., and Freire, E. (1989) Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its cell surface receptor, ganglioside GM1, Biochemistry, 8, 5019–5024.

    Article  Google Scholar 

  18. Kozireski-Chuback, D., Wu, G., and Ledeen, R. W. (1999) Developmental appearance of nuclear GM1 in neurons of the central and peripheral nervous systems, Dev. Brain Res., 115, 201–208.

    Article  CAS  Google Scholar 

  19. Baldauf, K. J., Royal, J. M., Hamorsky, K. T., and Matoba, N. (2015) Cholera toxin B: one subunit with many pharmaceutical applications, Toxins, 7, 974–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stratmann, T. (2015) Cholera toxin subunit B as adjuvant–an accelerator in protective immunity and a break in autoimmunity, Vaccines (Basel), 3, 579–596.

    Article  Google Scholar 

  21. Navolotskaya, E. V., Sadovnikov, V. B., Zinchenko, D. V., Vladimirov, V. I., Zolotarev, Y. A., and Kolobov, A. A. (2016) The LKEKK synthetic peptide as a ligand of rat intestinal epithelial cell membranes, Russ. J. Bioorg. Chem., 42, 479–483.

    Article  CAS  Google Scholar 

  22. Kots, A. Y., Martin, E., Sharina, I. G., and Murad, F. (2009) A short history of cGMP, guanylyl cyclases, and cGMP-dependent protein kinases, Handb. Exp. Pharmacol., 191, 1–14.

    Article  CAS  Google Scholar 

  23. Kuhn, M. (2016) Molecular physiology of membrane guanylyl cyclase receptors, Physiol. Rev., 96, 751–804.

    Article  CAS  PubMed  Google Scholar 

  24. Niedbala, W., Cai, B., and Liew, F. Y. (2006) Role of nitric oxide in the regulation of T-cell functions, Ann. Rheumatic Dis., 65, 37–40.

    Article  CAS  Google Scholar 

  25. Nath, N., Morinaga, O., and Singh, I. (2010) SNitrosoglutathione a physiologic nitric oxide carrier attenuates experimental autoimmune encephalomyelitis, J. Neuroimmune Pharmacol., 5, 240–251.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee, S. W., Choi, H., Eun, S. Y., Fukuyama, S., and Croft, M. (2011) Nitric oxide modulates TGF-β-directive signals to suppress Foxp3+ regulatory T cell differentiation and potentiate Th1 development, J. Immunol., 186, 6972–6980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, J., Zhang, R., Lu, G., Shen, Y., Peng, L., Zhu, C., Cui, M., Wang, W., Arnaboldi, P., Tang, M., Gupta, M., Qi, C. F., Jayaraman, P., Zhu, H., Jiang, B., Chen, S. H., He, J. C., Ting, A. T., Zhou, M. M., Kuchroo, V. K., Morse, H. C., Ozato, K., Sikora, A. G., and Xiong, H. (2013) T-cellderived inducible nitric oxide synthase switches off Th17 cell differentiation, J. Exp. Med., 210, 1447–1462.

    Article  CAS  PubMed Central  Google Scholar 

  28. Valenti, L., Mathieu, J., Chancerelle, Y., Levacher, M., Chanaud, B., De Sousa, M., Strzalko, S., Dinh-Xuan, A. T., Giroud, J. P., and Florentin, I. (2003) Nitric oxide inhibits spleen cell proliferative response after burn injury by inducing cytostasis, apoptosis, and necrosis of activated T-lymphocytes: role of the guanylate cyclase, Cell. Immunol., 221, 50–63.

    Article  CAS  PubMed  Google Scholar 

  29. Niedbala, W., Wei, X. Q., Piedrafita, D., Xu, D., and Liew, F. Y. (1999) Effects of nitric oxide on the induction and differentiation of Th1 cells, Eur. J. Immunol., 29, 2498–2505.

    Article  CAS  PubMed  Google Scholar 

  30. Niedbala, W., Wei, X. Q., Campbell, C., Thomson, D., Komai-Koma, M., and Liew, F. Y. (2002) Nitric oxide preferentially induces type 1 T-cell differentiation by selectively up-regulating IL-12 receptor β2 expression via cGMP, Proc. Natl. Acad. Sci. USA, 99, 16186–16191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei, X. Q., Charles, I. G., Smith, A., Ure, J., Feng, G. J., Huang, F. P., Xu, D., Muller, W., Moncada, S., and Liew, F. Y. (1995) Altered immune responses in mice lacking inducible nitric oxide synthase, Nature, 375, 408–411.

    Article  CAS  PubMed  Google Scholar 

  32. McInnes, I. B., Leung, B., Wei, X. Q., Gemmell, C. C., and Liew, F. Y. (1998) Septic arthritis following Staphylococcus aureus infection in mice lacking inducible nitric oxide synthase, J. Immunol., 160, 308–315.

    CAS  PubMed  Google Scholar 

  33. MacLean, A., Wei, X. Q., Huang, F. P., Al-Alem, U. A., Chan, W. L., and Liew, F. Y. (1998) Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses, J. Gen. Virol., 79, 825–830.

    Article  CAS  PubMed  Google Scholar 

  34. Huang, F. P., Niedbala, W., Wei, X. Q., Xu, D., Feng, G. J., Robinson, J. H., Lam, C., and Liew, F. Y. (1998) Nitric oxide regulates Th1 cell development through the inhibition of IL-12 synthesis by macrophages, Eur. J. Immunol., 28, 4062–4070.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Navolotskaya.

Additional information

Original Russian Text © E. V. Navolotskaya, V. B. Sadovnikov, D. V. Zinchenko, Y. A. Zolotarev, V. M. Lipkin, V. P. Zav'yalov4, 2017, published in Biokhimiya, 2017, Vol. 82, No. 9, pp. 1330-1337.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navolotskaya, E.V., Sadovnikov, V.B., Zinchenko, D.V. et al. Interaction of cholera toxin B-subunit with human T-lymphocytes. Biochemistry Moscow 82, 1036–1041 (2017). https://doi.org/10.1134/S0006297917090061

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917090061

Keywords

Navigation