Skip to main content
Log in

Hyperexpression of integrin α5β1 promotes resistance of MCF-7 human breast carcinoma cells to doxorubicin via ERK protein kinase down-regulation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In MCF-7 human breast carcinoma cells, α5β1 integrin hyperexpression, which was accomplished by transduction of a full-length α5 integrin cDNA, increased by about 50-70% the number of cells, survived during 48-72 h cell treatment with doxorubicin. Up-regulation of α5β1 reduced the level of the apoptogenic p53 protein and p21 cell cycle inhibitor, but enhanced the activity of Akt and mTOR protein kinases. In addition to these findings, we observed a significant decrease in the activity of both isoforms of phosphokinase Erk1/2, which is known to play a key role in cell viability pathways, including pathways alleviating stress damages caused by distinct antitumor drugs. Diminished Erk activity accompanying the rise of drug resistance can be explained by an “atypical” function of this kinase, which, in the cells studied, promotes an enhanced rather than reduced sensitivity to doxorubicin. To verify this suggestion, the effect of a specific Erk inhibitor, PD98059, on the resistance to doxorubicin of control and α5 cDNA-transduced MCF-7 cells was investigated. The data showed that suppression of Erk activity increased the resistance of control cells (transduced with an “empty” vector) to a level higher than that demonstrated by the α5 cDNA-transduced cells. The highest level of resistance was observed in α5β1trancduced cells treated with PD98059. Akt and mTOR kinase inhibitors had little if any effect on doxorubicin resistance of α5 cDNA-transduced MCF-7 cells. The data show for the first time that integrin α5β1 can stimulate drug resistance of tumor cells through a mechanism based on the inhibition of protein kinase Erk. From a more general view, the results of this investigation suggest that signal protein kinases can perform in tumor cells “non-canonical” functions, opposite to those, which are the basis for using kinase inhibitors in targeted cancer therapy. It follows that if a protein kinase is supposed to be used as a target for such therapy, it is important to explore its features in the particular tumor prior to the onset of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elliott, T., and Sethi, T. (2002) Integrins and extracellular matrix: a novel mechanism of multidrug resistance, Expert. Rev. Anticancer Ther., 2, 449–459.

    Article  CAS  PubMed  Google Scholar 

  2. Hazlehurst, L. A., Landowski, T. H., and Dalton, W. S. (2003) Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death, Oncogene, 22, 7396–7402.

    Article  CAS  PubMed  Google Scholar 

  3. Flier, A. V., and Sonnenberg, A. (2001) Function and interactions of integrins, Cell Tis. Rev., 305, 285–298.

    Article  Google Scholar 

  4. Hynes, R. O. (2002) Integrins: bidirectional, allosteric signaling machines, Cell, 110, 673–687.

    Article  CAS  PubMed  Google Scholar 

  5. Hodkinson, P. S., Mackinnon, A. C., and Sethi, T. (2007) Extracellular matrix regulation of drug resistance in smallcell lung cancer, Int. J. Radiat. Biol., 83, 733–741.

    Article  CAS  PubMed  Google Scholar 

  6. Long, Q. Z., Zhou, M., Liu, X. G., Du, Y. F., Fan, J. H., Li, X., and He, D. L. (2013) Interaction of CCN1 with ανβ3 integrin induces P-glycoprotein and confers vinblastine resistance in renal cell carcinoma cells, Anticancer Drugs, 24, 810–817.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, C. C., Leclair, P., Yap, S. Q., and Lim, C. J. (2013) The membrane-proximal KXGFFKR motif of α-integrin mediates chemoresistance, Mol. Cell. Biol., 33, 4334–4345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Janouskova, H., Maglott, A., Leger, D. Y., Bossert, C., Noulet, F., Guerin, E., Guenot, D., Pinel, S., Chastagner, P., Plenat, F., Entz-Werle, N., Lehmann-Che, J., Martin, S., Teisinger, J., and Dontenwill, M. (2012) Integrin α5β1 plays a critical role in resistance to temozolomide by interfering with the p53 pathway in high-grade glioma, Cancer Res., 14, 3463–3470.

    Article  Google Scholar 

  9. Naci, D., El Azreq, M. A., Chetoui, N., Lauden, L., Sigaux, F., Charron, D., Al-Daccak, R., and Aoudjit, F. (2012) α2β1 integrin promotes chemoresistance against doxorubicin in cancer cells through extracellular signalregulated kinase (ERK), J. Biol. Chem., 287, 17065–17076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, L., Yan, F., Zhao, D., Lv, M., Liang, X., Dai, H., Qin, X., Zhang, Y., Hao, J., Sun, X., Yin, Y., Huang, X., Zhang, J., Lu, J., and Ge, Q. (2016) Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3, Oncotarget, 7, 9844–9858.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ding, L., Zhang, Z., Liang, G., Yao, Z., Wu, H., Wang, B., Zhang, J., Tariq, M., Ying, M., and Yang, B. (2015) SAHA triggered MET activation contributes to SAHA tolerance in solid cancer cells, Cancer Lett., 356, 828–836.

    Article  CAS  PubMed  Google Scholar 

  12. De Toni-Costes, F., Despeaux, M., Bertrand, J., Bourogaa, E., Ysebaert, L., Payrastre, B., and Racaud-Sultan, C. (2010) A new α5β1 integrin-dependent survival pathway through GSK3β activation in leukemic cells, PLoS One, 5, 3, e9807.

    Article  Google Scholar 

  13. Morozevich, G. E., Kozlova, N. I., Cheglakov, I. B., Ushakova, N. A., Preobrazhenskaya, M. E., and Berman, A. E. (2008) Implication of α5β1 integrin in invasion of drug-resistant MCF-7/ADR breast carcinoma cells: a role for MMP-2 collagenase, Biochemistry (Moscow), 73, 791–796.

    Article  CAS  Google Scholar 

  14. Morozevich, G. E., Kozlova, N. I., Ushakova, N. A., Preobrazhenskaia, M. E., and Berman, A. E. (2011) Implication of integrin α5β1 in human breast carcinoma apoptosis and drug resistance, Biomed. Khim., 57, 77–84.

    Article  CAS  PubMed  Google Scholar 

  15. Morozevich, G. E., Kozlova, N. I., Ushakova N. A., and Berman, A. E. (2009) Integrin α5β1 controls invasion of human breast carcinoma cells by direct and indirect modulation of MMP-2 collagenase, Cell Cycle, 8, 2219–2225.

    Article  CAS  PubMed  Google Scholar 

  16. Morozevich, G. E., Kozlova, N. I., Ushakova, N. A., Preobrazhenskaya, M. E., and Berman, A. E. (2012) Integrin α5β1 simultaneously controls EGFR-dependent proliferation and Akt-dependent pro-survival signaling in epidermoid carcinoma cells, Aging (Albany NY), 4, 368–374.

    Article  CAS  Google Scholar 

  17. King, W. G., Mattaliano, M. D., Chan, T. O., Tsichlis, P. N., and Brugge, J. S. (1997) Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation, Mol. Cell. Biol., 17, 4406–4418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paoli, P., Giannoni, E., and Chiarugi, P. (2013) Anoikis molecular pathways and its role in cancer progression, Biochim. Biophys. Acta, 12, 3481–3498.

    Article  Google Scholar 

  19. Morozevich, G. E., Kozlova, N. I., Susova, O. Y., Karalkin, P. A., and Berman, A. E. (2015) Implication of α2β1 integrin in anoikis of MCF-7 human breast carcinoma cells, Biochemistry (Moscow), 80, 97–104.

    Article  CAS  Google Scholar 

  20. Sarbassov, D. D., Guertin, D. A., Ali, S. M., and Sabatini, D. M. (2005) Phosphorylation and regulation of Akt/PKB by the RICTOR–mTOR complex, Science, 307, 10981101.

    Article  Google Scholar 

  21. Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., and Kohn, K. W. (2004) Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks, Oncogene, 23, 2934–2949.

    Article  CAS  PubMed  Google Scholar 

  22. Layani-Bazar, A., Skornick, I., Berrebi, A., Pauker, M. H., Noy, E., Silberman, A., Albeck, M., Longo, D. L., Kalechman, Y., and Sredni, B. (2014) Redox modulation of adjacent thiols in VLA-4 by AS101 converts myeloid leukemia cells from a drug-resistant to drug-sensitive state, Cancer Res., 74, 3092–3103.

    Article  CAS  PubMed  Google Scholar 

  23. Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., Akiyama, T., Kuroda, H., Kawano, Y., Kobune, M., Kato, J., Hirayama, Y., Sakamaki, S., Kohda, K., Miyake, K., and Niitsu, Y. (2003) Interaction between leukemic cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia, Nat. Med., 9, 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  24. Hu, Z., Gao, S., Gao, J., Hou, R., Liu, C., Liu, J., Li, B., Liu, D., Zhang, S., and Lin, B. (2012) Elevated levels of Lewisy and integrin α5β1 correlate with chemotherapeutic drug resistance in epithelial ovarian carcinoma, Int. J. Mol. Sci., 13, 15588–15600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han, S., Li, Z., Master, L. M., Master, Z. W., and Wu, A. (2014) Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin β1-ERK pathway, Br. J. Cancer, 111, 14001409.

    Article  Google Scholar 

  26. Liu, S., Wang, J., Niu, W., Liu, E., Wang, J., Peng, C., Lin, P., Wang, B., Khan, A. Q., Gao, H., Liang, B., Shahbaz, M., and Niu, J. (2013) The β6-integrin-ERK/MAP kinase pathway contributes to chemo resistance in colon cancer, Cancer Lett., 328, 325–334.

    Article  CAS  PubMed  Google Scholar 

  27. El Azreq, M. A., Naci, D., and Aoudjit, F. (2012) Collagen/β1 integrin signaling up-regulates the ABCC1/ MRP-1 transporter in an ERK/MAPK-dependent manner, Mol. Biol. Cell, 17, 3473–3484.

    Article  Google Scholar 

  28. Blagosklonny, M. V., Schulte, T., Nguyen, P., Trepel, J., and Neckers, L. M. (1996) Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway, Cancer Res., 56, 1851–1854.

    CAS  PubMed  Google Scholar 

  29. Fehrenbache, N., Bastholm, L., Kirkegaard-Sorensen, T., Rafn, B., Bottzauw, T., Nielsen, C., Weber, E., Shirasawa, S., Kallunki, T., and Jaattela, M. (2008) Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2, Cancer Res., 68, 6623–6633.

    Article  Google Scholar 

  30. Cagnol, S., and Chambard, J. C. (2009) ERK and cell death: mechanisms of ERK induced cell death–apoptosis, autophagy and senescence, FEBS J., 277, 2–21.

    Article  PubMed  Google Scholar 

  31. Mai, H., Huang, J., Zhang, Y., Qu, N., Qu, H., Mei, G. H., Liu, J., Xu, X., and Chen, L. (2017) In vivo relation between plasma concentration of sorafenib and its safety in Chinese patients with metastatic renal cell carcinoma: a single center clinical study, Oncotarget, doi: 10.18632/oncotarget.16465.

    Google Scholar 

  32. Matveev, V. B., and Chernyaev, V. A. (2015) Sorafenib is the first targeted agent to treat metastatic kidney cancer, Cancer Urol., 11, 73–78.

    Article  Google Scholar 

  33. Roskoski, R., Jr. (2017) Allosteric MEK1/2 inhibitors including cobimetanib and trametinib in the treatment of cutaneous melanomas, Pharmacol. Res., 117, 20–31.

    Article  CAS  PubMed  Google Scholar 

  34. Duffy, M. J. (2006) Estrogen receptors: role in breast cancer, Crit. Rev. Lab. Sci., 43, 325–347.

    Article  CAS  Google Scholar 

  35. Oh, A. S., Lorant, L. A., Holloway, J. N., Miller, D. L., Kern, F. G., and El-Ashry, D. (2001) Hyperactivation of MAPK induces loss of ERα expression in breast cancer cells, Mol. Endocrinol., 15, 1344–1359.

    CAS  PubMed  Google Scholar 

  36. Jelovac, D., Sabnis, G., Long, B. J., Macedo, L., Goloubeva, O. G., and Brodie, A. M. (2005) Activation of mitogen-activated protein kinase in xenografts and cells during prolonged treatment with aromatase inhibitor letrozole, Cancer Res., 65, 5380–5389.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Berman.

Additional information

Original Russian Text © G. E. Morozevich, N. I. Kozlova, O. Y. Susova, A. Y. Lupatov, A. E. Berman, 2017, published in Biokhimiya, 2017, Vol. 82, No. 9, pp. 1309-1317.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozevich, G.E., Kozlova, N.I., Susova, O.Y. et al. Hyperexpression of integrin α5β1 promotes resistance of MCF-7 human breast carcinoma cells to doxorubicin via ERK protein kinase down-regulation. Biochemistry Moscow 82, 1017–1024 (2017). https://doi.org/10.1134/S0006297917090048

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917090048

Keywords

Navigation