Skip to main content
Log in

SkQ1 regulates expression of Nrf2, ARE-controlled genes encoding antioxidant enzymes, and their activity in cerebral cortex under oxidative stress

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The administration of SkQ1 to rats at the dose of 50 nmol/kg for five days significantly increased the mRNA levels of transcription factor Nrf2 and of Nrf2-controlled genes encoding antioxidant enzymes SOD1, SOD2, CAT, and GPx4, whereas changes in the level of mRNA of SOD3 in the cerebral cortex of the rat brain were not significant. This was accompanied by activation of antioxidant enzymes (SOD, CAT, GPx, and GST) and increase in reduced glutathione concentration. Under oxidative stress induced by hyperoxia (0.5 MPa for 90 min), the mRNA level of transcription factor Nrf2 decreased, whereas changes in the transcriptional activity of Nrf2-induced genes (SOD1-3, CAT, GPx4) encoding antioxidant enzymes in the cortex of the rat brain hemispheres were insignificant. Under conditions of hyperoxia, lipid peroxidation intensity was increased, CAT was inhibited, and GST activity was moderately increased, whereas SOD and GPx activities in the rat brain cerebral cortex remained at the stationary level. Pretreatment with SkQ1 before the exposure to hyperbaric oxygenation led to an increase in mRNA level of transcription factor Nrf2 and of Nrf2-induced genes (SOD1-2, CAT, and GPx4) encoding antioxidant enzymes, whereas SOD3 expression in the cerebral cortex of the rat brain under oxidative stress was not changed. Concurrently, we observed an increase in activities of these antioxidant enzymes (SOD, CAT, GPx, and GST) and in level of reduced glutathione. We hypothesize that the protective effect of SkQ1 under hyperoxia-induced oxidative stress could be realized via direct antioxidant activity and through stimulation of the signaling defense system Keap1/Nrf2/ARE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARE:

antioxidant-responsive element

HBO:

hyperbaric oxygenation

LPO:

lipid peroxidation

Nrf2:

NF-E2-related factor 2

ROS:

reactive oxygen species

References

  1. Suzuki, T., and Yamamoto, M. (2015) Molecular basis of the Keap1–Nrf2 system, Free Radic. Biol. Med., 88, 93–100.

    Article  CAS  PubMed  Google Scholar 

  2. Hybertson, B. M., Gao, B., Bose, S. K., and McCord, J. M. (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation, Mol. Asp. Med., 32, 234–246.

    Article  CAS  Google Scholar 

  3. Holmstrom, K. M., Baird, L., Zhang, Y., Hargreaves, I., Chalasani, A., Land, J. M., Stanyer, L., Yamamoto, M., Dinkova-Kostova, A. T., and Abramov, A. Y. (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration, Biol. Open, 2, 761–770.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tebay, L. E., Robertson, H., Durant, S. T., Vitale, S. R., Penning, T. M., Dinkova-Kostova, A. T., and Hayes, J. D. (2015) Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease, Free Radic. Biol. Med., 88, 108–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sandberg, M., Patil, J., D’Angelo, B., Weber, S. G., and Mallard, C. (2014) NRF2-regulation in brain health and disease: implication of cerebral inflammation, Neuropharmacology, 79, 298–306.

    Article  CAS  PubMed  Google Scholar 

  6. Clark, J. (2008) Oxygen toxicity, in Physiology and Medicine of Hyperbaric Oxygen Therapy (Neuman, T. S., and Thom, S. R., eds.) Philadelphia, PA, Saunders, pp. 527–563.

    Chapter  Google Scholar 

  7. Skulachev, V. P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases, J. Alzheimer’s Dis., 28, 283–289.

    CAS  Google Scholar 

  8. Isaev, N. K., Novikova, C. V., Stelmashuk, E. V., Barskov, I. V., Silachev, D. N., Khaspekov, L. G., Skulachev, V. P., and Zorov, D. B. (2012) Mitochondria-targeted plastoquinone derivative antioxidant SkQR1 decreases traumainduced neurological deficit in rat, Biochemistry (Moscow), 77, 996–999.

    Article  CAS  Google Scholar 

  9. Silachev, D. N., Plotnikov, E. Y., Zorova, L. D., Pevzner, I. B., Sumbatyan, N. V., Korshunova, G. A., Gulyaev, M. V., Pirogov, Y. A., Skulachev, V. P., and Zorov, D. B. (2015) Neuroprotective effects of mitochondria-targeted plastoquinone and thymoquinone in a rat model of brain ischemia/reperfusion injury, Molecules, 20, 14487–14503.

    Article  CAS  PubMed  Google Scholar 

  10. Lukash, A. I., Vnukov, V. V., Ananyan, A. A., Milyutina, N. P., and Kvasha, P. N. (1996) Metal-Containing Compounds of Blood Plasma at Hyperbaric Oxygenation (Experimental and Clinical Aspects) [in Russian], RGU Publishers, Rostov-on-Don.

    Google Scholar 

  11. Chistyakov, V. A., Serezhenkov, V. A., Aleksandrova, A. A., Milyutina, N. P., Prokof’ev, V. N., Mashkina, E. V., Gutnikova, L. V., and Dem’yanenko, S. V. (2010) Effects of plastoquinone derivative 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) on contents of steroid hormones and NO level in rats, Biochemistry (Moscow), 75, 1383–1387.

    Article  CAS  Google Scholar 

  12. Sirota, T. V. (1999) A new approach in studies on autoxidation of norepinephrine and its use for determination of superoxide dismutase activity, Vopr. Med. Khim., 3, 14–15.

    Google Scholar 

  13. Korolyuk, M. A., Ivanova, L. I., Maiorova, I. G., and Tokarev, V. E. (1988) Method for determination of catalase activity, Lab. Delo, 1, 16–19.

    Google Scholar 

  14. Moin, V. M. (1986) A simple and specific method for determination of glutathione peroxidase activity in erythrocytes, Lab. Delo, 12, 724–727.

    Google Scholar 

  15. Habig, W. H., Pabst, M. J., and Jacoby, W. B. (1974) Glutathione-S-transferase: the first step in mercapturic acid formation, J. Biol. Chem., 249, 7130–7139.

    CAS  PubMed  Google Scholar 

  16. Avis, P. G., Bergel, F., and Bray, R. C. (1955) Cellular constituents. The chemistry of xanthine oxidase, J. Chem. Soc., 1100–1105.

    Google Scholar 

  17. Stalnaya, I. D. (1977) Method of determination of diene conjugation of unsaturated higher fatty acids, in Modern Methods in Biochemistry (Orekhovich, V. N., ed.) [in Russian], Meditsina, Moscow, pp. 63–64.

    Google Scholar 

  18. Stalnaya, I. D., and Garishvili, T. G. (1977) Method of determination of malonic dialdehyde with thiobarbituric acid, in Modern Methods in Biochemistry (Orekhovich, V. N., ed.) [in Russian], Meditsina, Moscow, pp. 66–68.

    Google Scholar 

  19. Bidlack, W. R., and Tappel, A. T. (1973) Fluorescent products of phospholipids during lipid peroxidation, Lipids, 8, 203–209.

    Article  CAS  PubMed  Google Scholar 

  20. Bligh, E., and Dyer, W. (1959) Rapid method of lipids extraction and purification, Can. J. Biochem. Physiol., 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  21. Vnukov, V. V., Gutsenko, O. I., Milyutina, N. P., Ananyan, A. A., Danilenko, A. O., Panina, S. B., and Kornienko, I. V. (2015) Influence of SkQ1 on expression of Nrf2 transcription factor gene, ARE-controlled genes of antioxidant enzymes and their activity in rat blood leukocytes, Biochemistry (Moscow), 80, 586–591.

    Article  CAS  Google Scholar 

  22. Vnukov, V. V., Gutsenko, O. I., Milyutina, N. P., Kornienko, I. V., Ananyan, A. A., Danilenko, A. O., Panina, S. B., Plotnikov, A. A., and Makarenko, M. S. (2015) Influence of SkQ1 on expression of Nrf2 gene, ARE-controlled genes of antioxidant enzymes and their activity in rat blood leukocytes under oxidative stress, Biochemistry (Moscow), 80, 1598–1605.

    Article  CAS  Google Scholar 

  23. Forman, H. J., Davies, K. J. A., and Ursini, F. (2014) How do nutritional antioxidants really work: nucleophilic tone and parahormesis versus free radical scavenging in vivo, Free Radic. Biol. Med., 66, 24–35.

    Article  CAS  PubMed  Google Scholar 

  24. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletyushkina, O. Y., Pustovidko, A. V., Roginsky, T. I., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Sumonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vasiliev, Y. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 1273–1285.

    Article  CAS  Google Scholar 

  25. Kwak, M. K., Itoh, K., Yamamoto, M., and Kensler, T. W. (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter, Mol. Cell Biol., 22, 2883–2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harder, B., Jiang, T., Wu, T., Tao, S., Rojo de la Vega, M., Tian, M., Chapman, E., and Zhang, D. D. (2015) Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention, Biochem. Soc. Trans., 43, 680–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bryan, H. K., Olayanju, A., Goldring, C. E., and Park, B. K. (2013) The Nrf2 cell defense pathway: Keap1-dependent and -independent mechanisms of regulation, Biochem. Pharmacol., 85, 705–717.

    Article  CAS  PubMed  Google Scholar 

  28. Halliwell, B., and Gutteridge, J. (2001) Free Radicals in Biology and Medicine, Oxford University Press, New York, pp. 712–733.

    Google Scholar 

  29. Hulbert, A. J., Pamplona, R., Buffenstein, R., and Buttemer, W. A. (2007) Life and death: metabolic rate, membrane composition, and life span of animals, Physiol. Rev., 87, 1175–1213.

    Article  CAS  PubMed  Google Scholar 

  30. Garbarino, V. R., Orr, M. E., Rodriguez, K. A., and Buffenstein, R. (2015) Mechanisms of oxidative stress resistance in the brain: lessons learned from hypoxia tolerant extremophilic vertebrates, Arch. Biochem. Biophys., 576, 8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davies, S. S., and Guo, L. (2014) Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids, Chem. Phys. Lipids, 181, 1–33.

    Article  CAS  PubMed  Google Scholar 

  32. Cho, H.-Y., Jedlicka, A. E., Reddy, S. P., Zhang, L. Y., Kensler, T. W., and Kleeberger, S. R. (2002) Linkage analysis of susceptibility to hyperoxia. Nrf2 is a candidate gene, Am. J. Respir. Cell Mol. Biol., 26, 42–51.

    Article  CAS  PubMed  Google Scholar 

  33. Reddy, S. P. (2008) The antioxidant response element and oxidative stress modifiers in airway diseases, Curr. Mol. Med., 8, 376–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He, X., and Ma, Q. (2009) NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation, Mol. Pharmacol., 76, 1265–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hummler, S. C., Rong, M., Chen, S., Hehre, D., Alapati, D., and Wu, S. (2013) Targeting glycogen synthase kinase-3β to prevent hyperoxia-induced lung injury in neonatal rats, Am. J. Respir. Cell Mol. Biol., 48, 578–588.

    Article  CAS  PubMed  Google Scholar 

  36. Saric, A., Sobocanec, S., Safranko, Z. M., Hadzija, M. P., Bagaric, R., Farkas, V., Svarc, A., Marotti, T., and Balog, T. (2015) Diminished resistance to hyperoxia in brains of reproductively senescent female CBA/H mice, Med. Sci. Monit. Basic Res., 21, 191–199.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Perkowski, S., Sun, J., Singhal, S., Santiago, J., Leikauf, G. D., and Albelda, S. M. (2002) Gene expression profiling of the early pulmonary response to hyperoxia in mice, Am. J. Respir. Cell Mol. Biol., 28, 682–696.

    Article  Google Scholar 

  38. Vnukov, V. V., Danilenko, A. O., Milyutina, N. P., Ananyan, A. A., and Gutsenko, O. I. (2012) SkQ1 as a regulator of free radial oxidation at hyperoxia, Izv. Vuzov Sev. Kavkaz. Region. Ser. Estestv. Nauki, 6, 77–80.

    Google Scholar 

  39. Harrison, R. (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic. Biol. Med., 33, 774–797.

    Article  CAS  PubMed  Google Scholar 

  40. Ben-Ari, J., Machoul, I. R., Dorio, R. J., Buckley, S., Warburton, D., and Walker, S. M. (2000) Cytokine response during hyperoxia: sequential production of pulmonary tumor necrosis factor and interleukin-6 in neonate rats, Isr. Med. Assoc. J., 2, 365–369.

    CAS  PubMed  Google Scholar 

  41. Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., and Ta, X. (2017) Nrf2 signaling pathway: pivotal roles in inflammation, Biochim. Biophys. Acta, 1863, 585–597.

    Article  CAS  PubMed  Google Scholar 

  42. Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion, Biochim. Biophys. Acta, 1812, 77–86.

    Article  CAS  PubMed  Google Scholar 

  43. Silachev, D. N., Isaev, N. K., Pevzner, I. B., Zorova, L. D., Stelmashook, E. V., Novikova, S. V., Plotnikov, E. Y., Skulachev, V. P., and Zorov, D. B. (2012) The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk, PLoS One, 7, 1–11.

    Article  Google Scholar 

  44. Sifringer, M., Brait, D., Weichelt, U., Zimmerman, G., Endesfelder, S., Brehmer, F., von Haefen, C., Friedman, A., Soreq, H., Bendix, I., Gerstner, B., and Felderhoff-Mueser, U. (2010) Erythropoietin attenuates hyperoxiainduced oxidative stress in the developing rat brain, Brain Behav. Immun., 24, 792–799.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, D.-X., Zhang, L.-M., Zhao, X.-C., and Sun, W. (2017) Neuroprotective effects of erythropoietin against sevoflurane-induced neuronal apoptosis in primary rat cortical neurons involving the EPOR-Erk1/2-Nrf2/Bach1 signal pathway, Biomed. Pharmacother., 87, 332–341.

    Article  CAS  PubMed  Google Scholar 

  46. Stefanova, N. A., Muraleva, N. A., Maksimova, K. Y., Rudnitskaya, E. A., Kiseleva, E., Telegina, D. V., and Kolosova, N. G. (2016) An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology, Aging (Albany NY), 8, 2713–2733.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Milyutina.

Additional information

Original Russian Text © V. V. Vnukov, O. I. Gutsenko, N. P. Milyutina, I. V. Kornienko, A. A. Ananyan, A. A. Plotnikov, S. B. Panina, 2017, published in Biokhimiya, 2017, Vol. 82, No. 8, pp. 1220-1231.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vnukov, V.V., Gutsenko, O.I., Milyutina, N.P. et al. SkQ1 regulates expression of Nrf2, ARE-controlled genes encoding antioxidant enzymes, and their activity in cerebral cortex under oxidative stress. Biochemistry Moscow 82, 942–952 (2017). https://doi.org/10.1134/S0006297917080090

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917080090

Keywords

Navigation