Biochemistry (Moscow)

, Volume 82, Issue 8, pp 925–932 | Cite as

Structural insight into interaction between C20 phenylalanyl derivative of tylosin and ribosomal tunnel

  • G. I. Makarov
  • N. V. Sumbatyan
  • A. A. BogdanovEmail author


Macrolides are clinically important antibiotics that inhibit protein biosynthesis on ribosomes by binding to ribosomal tunnel. Tylosin belongs to the group of 16-membered macrolides. It is a potent inhibitor of translation whose activity is largely due to reversible covalent binding of its aldehyde group with the base of A2062 in 23S ribosomal RNA. It is known that the conversion of the aldehyde group of tylosin to methyl or carbinol groups dramatically reduces its inhibitory activity. However, earlier we obtained several derivatives of tylosin having comparable activity in spite of the fact that the aldehyde group of tylosin in these compounds was substituted with an amino acid or a peptide residue. Details of the interaction of these compounds with the ribosome that underlies their high inhibitory activity were not known. In the present work, the structure of the complex of tylosin derivative containing in position 20 the residue of ethyl ester of 2-imino(oxy)acetylphenylalanine with the tunnel of the E. coli ribosome was identified by means of molecular dynamics simulations, which could explain high biological activity of this compound.


ribosome simulation antibiotics tylosin molecular dynamics 



molecular dynamics


nascent peptide exit tunnel




peptidyltransferase center


phenylalanyl derivative of tylosin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Omura, S. (ed.) (2003) Macrolide Antibiotics: Chemistry, Biology and Practice, 2nd Edn., Academic Press, N.Y.Google Scholar
  2. 2.
    Dunkle, J. A., Xiong, L., Mankin, A. S., and Cate, J. H. D. (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action, Proc. Natl. Acad. Sci. USA, 107, 17152–17157.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hansen, J., Ippolito, J., Ban, N., Nissen P., Moore, P., and Steitz, T. (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit, Mol. Cell, 10, 117–128.CrossRefPubMedGoogle Scholar
  4. 4.
    Wilson, D. N. (2009) The A-Z of bacterial translation inhibitors, Crit. Rev. Biochem. Mol. Biol., 44, 393–433.CrossRefPubMedGoogle Scholar
  5. 5.
    Ruan, Z.-X., Huangfu, D.-S., Xu, X.-J., Sun, P.-H., and Chen, W.-M. (2013) 3D-QSAR and molecular docking for the discovery of ketolide derivatives, Exp. Opin. Drug Discov., 8, 427–444.CrossRefGoogle Scholar
  6. 6.
    Korshunova, G. A., Sumbatyan, N. V., Fedorova, N. V., Kuznetsova, I. V., Shishkina, A. V., and Bogdanov, A. A. (2007) Peptide derivatives of tylosin-related macrolides, Russ. J. Bioorg. Chem., 33, 218–226.CrossRefGoogle Scholar
  7. 7.
    Sumbatyan, N. V., Kuznetsova, I. V., Karpenko, V. V., Fedorova, N. V., Chertkov, V. A., Korshunova, G. A., and Bogdanov, A. A. (2010) Amino acid and peptide derivatives of the tylosin family of antibiotics modified by aldehyde function, Russ. J. Bioorg. Chem., 36, 245–256.CrossRefGoogle Scholar
  8. 8.
    Starosta, A. L., Karpenko, V. V., Shishkina, A. V., Mikolajka, A., Sumbatyan, N. V., Schluenzen, F., Korshunova, G. A., Bogdanov, A. A., and Wilson, D. N. (2010) Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition, Chem. Biol., 17, 504–514.CrossRefPubMedGoogle Scholar
  9. 9.
    Makarov, G. I., Makarova, T. M., Sumbatyan, N. V., and Bogdanov, A. A. (2016) Investigation of ribosomes using molecular dynamics simulation methods, Biochemistry (Moscow), 81, 1579–1588.CrossRefGoogle Scholar
  10. 10.
    Shishkina, A., Makarov, G., Tereshchenkov, A., Korshunova, G., Sumbatyan, N., Golovin, A., Svetlov, M., and Bogdanov, A. (2013) Conjugates of amino acids and peptides with 5-O-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel, Bioconjug. Chem., 24, 1861–1869.CrossRefPubMedGoogle Scholar
  11. 11.
    Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D’Souza, L. M., Du, Y., Feng, B., Lin, N., Madabusi, L. V., Muller, K. M., Pande, N., Shang, Z., Yu, N., and Gutell, R. R. (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs, BMC Bioinformatics, 3, 1–31.CrossRefGoogle Scholar
  12. 12.
    Byrd, R., Lu, P., and Nocedal, J. (1995) A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Statist. Comput., 16, 1190–1208.CrossRefGoogle Scholar
  13. 13.
    Petrone, P., Snow, C., Lucent, D., and Pande, V. (2008) Side-chain recognition and gating in the ribosome exit tunnel, Proc. Natl. Acad. Sci. USA, 105, 16549–16554.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lucent, D., Snow, C., Aitken, C., and Pande, V. (2010) Non-bulk-like solvent behavior in the ribosome exit tunnel, PLoS Comput. Biol., 6, e1000963.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ruiz-Carmona, S., Alvarez-Garcia, D., Foloppe, N., Garmendia-Doval, A. B., Juhos, S., Schmidtke, P., Barril, X., Hubbard, R. E., and Morley, S. D. (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids, PLoS Comput. Biol., 10, e1003571.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A., and Berendsen, H. (2005) GROMACS: fast, flexible, free, J. Comput. Chem., 26, 1701–1718.CrossRefGoogle Scholar
  17. 17.
    Van der Spoel, D., Lindahl, E., Hess, B., and Kutzner, C. (2008) GROMACS 4: algorithms for highly efficient, loadbalanced, and scalable molecular simulation, J. Chem. Theory Comp., 4, 435–447.CrossRefGoogle Scholar
  18. 18.
    Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters, Prot. Struct. Funct. Bioinform., 65, 712–725.CrossRefGoogle Scholar
  19. 19.
    Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004) Development and testing of a general Amber force field, J. Comput. Chem., 25, 1157–1174.CrossRefPubMedGoogle Scholar
  20. 20.
    Bayly, C. I., Cieplak, P., Cornell, W., and Kollman, P. A. (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, J. Phys. Chem., 97, 10269–10280.CrossRefGoogle Scholar
  21. 21.
    Bussi, G., Donadio, D., and Parrinello, M. (2007) Canonical sampling through velocity rescaling, J. Chem. Phys., 126, 014107–014106.CrossRefGoogle Scholar
  22. 22.
    Berendsen, H., Postma, J., van Gunsteren, W., DiNola, A., and Haak, J. (1984) Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684–3690.CrossRefGoogle Scholar
  23. 23.
    Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089–10092.CrossRefGoogle Scholar
  24. 24.
    Horn, H. W., Swope, W. C., Pitera, J. W., Madura, J. D., Dick, T. J., Hura, G. L., and Head-Gordon, T. (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-EW, J. Chem. Phys., 120, 9665–9678.CrossRefPubMedGoogle Scholar
  25. 25.
    Joung, I. S., and Cheatham, T. E. (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations, J. Phys. Chem. B, 112, 9020–9041.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Athavale, S., Petrov, A., Hsiao, C., Watkins, D., Prickett, C., Gossett, J., Lie, L., Bowman, J., O’Neill, E., Hud, C. B. N., Wartell, R., Harvey, S., and Williams, L. (2012) RNA folding and catalysis mediated by iron (II), PLoS One, 7, 1–7.CrossRefGoogle Scholar
  27. 27.
    Hess, B., Bekker, H., Berendsen, H. J., and Fraaije, J. G. (1997) LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463–1472.CrossRefGoogle Scholar
  28. 28.
    Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., and Bussi, G. (2014) PLUMED 2: new feathers for an old bird, Comp. Phys. Commun., 185, 604–613.CrossRefGoogle Scholar
  29. 29.
    Daura, X., Gademann, K., Jaun, B., Seebach, D., Gunsteren, W. F., and Mark, A. E. (1999) Peptide folding: when simulation meets experiment, Ang. Chem. Inter. Ed., 38, 236–240.CrossRefGoogle Scholar
  30. 30.
    Wilson, D., Harms, J., Nierhaus, K., Schlunzen, F., and Fucini, P. (2005) Species-specific antibiotic–ribosome interactions: implications for drug development, Biol. Chem., 386, 1239–1252.CrossRefPubMedGoogle Scholar
  31. 31.
    Marks, J., Kannan, K., Roncase, E. J., Klepacki, D., Kefi, A., Orelle, C., Vázquez-Laslop, N., and Mankin, A. S. (2016) Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center, Proc. Natl. Acad. Sci. USA, 113, 12150–12155.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sothiselvam, S., Neuner, S., Rigger, L., Klepacki, D., Micura, R., Vázquez-Laslop, N., and Mankin, A. S. (2017) Binding of macrolide antibiotics leads to ribosomal selection against specific substrates based on their charge and size, Cell Rep., 16, 1789–1799.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. I. Makarov
    • 1
    • 2
  • N. V. Sumbatyan
    • 2
  • A. A. Bogdanov
    • 1
    • 3
    Email author
  1. 1.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.South Ural State UniversityChelyabinskRussia
  3. 3.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations