Skip to main content
Log in

PDX1: A unique pancreatic master regulator constantly changes its functions during embryonic development and progression of pancreatic cancer

  • Mini-Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Multifunctional activity of the PDX1 gene product is reviewed. The PDX1 protein is unique in that being expressed exclusively in the pancreas it exhibits various functional activities in this organ both during embryonic development and during induction and progression of pancreatic cancer. Hence, PDX1 belongs to the family of master regulators with multiple and often antagonistic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EMT:

epithelial–mesenchymal transition

PDAC:

pancreatic ductal adenocarcinoma

PDX1:

pancreatic and duodenal homeobox 1

References

  1. Shih, H. P., Seymour, P. A., Patel, N. A., Xie, R., Wang, A., Liu, P. P., Yeo, G. W., Magnuson, M. A., and Sander, M. (2015) A gene regulatory network cooperatively controlled by Pdx1 and Sox9 governs lineage allocation of foregut progenitor cells, Cell Rep., 13, 326–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shih, H. P., Wang, A., and Sander, M. (2013) Pancreas organogenesis: from lineage determination to morphogenesis, Annu. Rev. Cell. Dev. Biol., 29, 81–105.

    Article  CAS  PubMed  Google Scholar 

  3. Teo, A. K., Tsuneyoshi, N., Hoon, S., Tan, E. K., Stanton, L. W., Wright, C. V., and Dunn, N. R. (2015) PDX1 binds and represses hepatic genes to ensure robust pancreatic commitment in differentiating human embryonic stem cells, Stem Cell Rep., 4, 578–590.

    Article  CAS  Google Scholar 

  4. Kondratyeva, L. G., Vinogradova, T. V., Chernov, I. P., and Sverdlov, E. D. (2015) Master transcription regulators specifying cell-lineage fate in development as possible therapeutic targets in oncology, Russ. J. Genet., 51, 1049–1059.

    Article  CAS  Google Scholar 

  5. Roy, N., and Hebrok, M. (2015) Regulation of cellular identity in cancer, Dev. Cell, 35, 674–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, A., Yue, F., Li, Y., Xie, R., Harper, T., Patel, N. A., Muth, K., Palmer, J., Qiu, Y., Wang, J., Lam, D. K., Raum, J. C., Stoffers, D. A., Ren, B., and Sander, M. (2015) Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates, Cell. Stem. Cell, 16, 386–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stanger, B. Z., and Hebrok, M. (2013) Control of cell identity in pancreas development and regeneration, Gastroenterology, 144, 1170–1179.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Puri, S., Folias, A. E., and Hebrok, M. (2015) Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease, Cell Stem Cell, 16, 18–31.

    Article  CAS  PubMed  Google Scholar 

  9. Thompson, N., Gesina, E., Scheinert, P., Bucher, P., and Grapin-Botton, A. (2012) RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors, Mol. Cell. Biol., 32, 1189–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoang, C. Q., Hale, M. A., Azevedo-Pouly, A. C., Elsasser, H. P., Deering, T. G., Willet, S. G., Pan, F. C., Magnuson, M. A., Wright, C. V., Swift, G. H., and MacDonald, R. J. (2016) Transcriptional maintenance of pancreatic acinar identity, differentiation, and homeostasis by PTF1A, Mol. Cell. Biol., 36, 3033–3047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dassaye, R., Naidoo, S., and Cerf, M. E. (2016) Transcription factor regulation of pancreatic organogenesis, differentiation and maturation, Islets, 8, 13–34.

    Article  CAS  PubMed  Google Scholar 

  12. Larsen, H. L., and Grapin-Botton, A. (2017) The molecular and morphogenetic basis of pancreas organogenesis, Semin. Cell Dev. Biol., pii: S1084-9521(17)30007-1.

    Google Scholar 

  13. Cano, D. A., Soria, B., Martin, F., and Rojas, A. (2014) Transcriptional control of mammalian pancreas organogenesis, Cell. Mol. Life Sci., 71, 2383–2402.

    Article  CAS  PubMed  Google Scholar 

  14. Spaeth, J. M., Walker, E. M., and Stein, R. (2016) Impact of Pdx1-associated chromatin modifiers on islet beta-cells, Diabetes Obes. Metab., 18, 123–127.

    Article  CAS  PubMed  Google Scholar 

  15. Ischenko, I., Petrenko, O., and Hayman, M. J. (2014) Analysis of the tumor-initiating and metastatic capacity of PDX1-positive cells from the adult pancreas, Proc. Natl. Acad. Sci. USA, 111, 3466–3471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Willmann, S. J., Mueller, N. S., Engert, S., Sterr, M., Burtscher, I., Raducanu, A., Irmler, M., Beckers, J., Sass, S., Theis, F. J., and Lickert, H. (2016) The global gene expression profile of the secondary transition during pancreatic development, Mech. Dev., 139, 51–64.

    Article  CAS  PubMed  Google Scholar 

  17. Kuzmich, A. I., Tyulkina, D. V., Vinogradova, T. V., and Sverdlov, E. D. (2015) Pioneer transcription factors in normal development and cancerogenesis, Russ. J. Bioorg. Chem., 41, 570–577.

    Article  CAS  Google Scholar 

  18. Zinovyeva, M. V., Kuzmich, A. I., Monastyrskaya, G. S., and Sverdlov, E. D. (2016) The role of FOXA subfamily factors in embryonic development and cancerogenesis of the pancreas, Mol. Genet. Microbiol. Virol., 31, 135–142.

    Article  Google Scholar 

  19. Yin, C. (2016) Molecular mechanisms of Sox transcription factors during the development of liver, bile duct, and pancreas, Semin. Cell Dev. Biol., doi: 10.1016/j.semcdb.2016.08.015.

    Google Scholar 

  20. Hidalgo, M. (2010) Pancreatic cancer, N. Engl. J. Med., 362, 1605–1617.

    Article  CAS  PubMed  Google Scholar 

  21. Fokas, E., O’Neill, E., Gordon-Weeks, A., Mukherjee, S., McKenna, W. G., and Muschel, R. J. (2015) Pancreatic ductal adenocarcinoma: from genetics to biology to radiobiology to oncoimmunology and all the way back to the clinic, Biochim. Biophys. Acta, 1855, 61–82.

    CAS  PubMed  Google Scholar 

  22. Ying, H., Dey, P., Yao, W., Kimmelman, A. C., Draetta, G. F., Maitra, A., and DePinho, R. A. (2016) Genetics and biology of pancreatic ductal adenocarcinoma, Genes Dev., 30, 355–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, D., Schlotman, K. E., and Xie, J. (2016) Deciphering the role of hedgehog signaling in pancreatic cancer, J. Biomed. Res., 30, 353–360.

    PubMed  PubMed Central  Google Scholar 

  24. Bardeesy, N., Aguirre, A. J., Chu, G. C., Cheng, K. H., Lopez, L. V., Hezel, A. F., Feng, B., Brennan, C., Weissleder, R., Mahmood, U., Hanahan, D., Redston, M. S., Chin, L., and Depinho, R. A. (2006) Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse, Proc. Natl. Acad. Sci. USA, 103, 5947–5952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gidekel Friedlander, S. Y., Chu, G. C., Snyder, E. L., Girnius, N., Dibelius, G., Crowley, D., Vasile, E., DePinho, R. A., and Jacks, T. (2009) Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras, Cancer Cell, 16, 379–389.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tanaka, S. (2015) Molecular pathogenesis and targeted therapy of pancreatic cancer, Ann. Surg. Oncol., 23, 197–205.

    Article  Google Scholar 

  27. Norris, A. L., Roberts, N. J., Jones, S., Wheelan, S. J., Papadopoulos, N., Vogelstein, B., Kinzler, K. W., Hruban, R. H., Klein, A. P., and Eshleman, J. R. (2015) Familial and sporadic pancreatic cancer share the same molecular pathogenesis, Fam. Cancer, 14, 95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brosens, L. A., Hackeng, W. M., Offerhaus, G. J., Hruban, R. H., and Wood, L. D. (2015) Pancreatic adenocarcinoma pathology: changing “landscape”, J. Gastrointest. Oncol., 6, 358–374.

    PubMed  PubMed Central  Google Scholar 

  29. Shah, M., and Allegrucci, C. (2013) Stem cell plasticity in development and cancer: epigenetic origin of cancer stem cells, Subcell. Biochem., 61, 545–565.

    Article  CAS  PubMed  Google Scholar 

  30. Zinovyeva, M. V., Kostina, M. B., Monastyrskaya, G. S., Sass, A. V., Filyukova, O. B., Vinogradova, T. V., Kopantsev, E. P., and Sverdlov, E. D. (2015) Genetic markers for lung and esophagus common precursor cells in human development, Dokl. Biochem. Biophys., 463, 203–208.

    Article  CAS  PubMed  Google Scholar 

  31. Roy, N., Takeuchi, K. K., Ruggeri, J. M., Bailey, P., Chang, D., Li, J., Leonhardt, L., Puri, S., Hoffman, M. T., Gao, S., Halbrook, C. J., Song, Y., Ljungman, M., Malik, S., Wright, C. V., Dawson, D. W., Biankin, A. V., Hebrok, M., and Crawford, H. C. (2016) PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance, Genes Dev., 30, 2669–2683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blanpain, C. (2013) Tracing the cellular origin of cancer, Nat. Cell. Biol., 15, 126–134.

    Article  CAS  PubMed  Google Scholar 

  33. Kopp, J. L., von Figura, G., Mayes, E., Liu, F. F., Dubois, C. L., Morris, J. P., Pan, F. C., Akiyama, H., Wright, C. V., Jensen, K., Hebrok, M., and Sander, M. (2012) Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma, Cancer Cell, 22, 737–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei, D., Wang, L., Yan, Y., Jia, Z., Gagea, M., Li, Z., Zuo, X., Kong, X., Huang, S., and Xie, K. (2016) KLF4 is essential for induction of cellular identity change and acinar-toductal reprogramming during early pancreatic carcinogenesis, Cancer Cell, 29, 324–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Diaferia, G. R., Balestrieri, C., Prosperini, E., Nicoli, P., Spaggiari, P., Zerbi, A., and Natoli, G. (2016) Dissection of transcriptional and cis-regulatory control of differentiation in human pancreatic cancer, EMBO J., 35, 595–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, J., Hong, S., Klimstra, D., Goggins, M., Maitra, A., and Hruban, R. (2011) Pdx1 expression in pancreatic precursor lesions and neoplasms, Appl. Immunohistochem. Mol. Morphol., 19, 444–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miyazaki, S., Tashiro, F., and Miyazaki, J. (2016) Transgenic expression of a single transcription factor Pdx1 induces transdifferentiation of pancreatic acinar cells to endocrine cells in adult mice, PLoS One, 11, e0161190.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stepanenko, A. A., Vassetzky, Y. S., and Kavsan, V. M. (2013) Antagonistic functional duality of cancer genes, Gene, 529, 199–207.

    Article  CAS  PubMed  Google Scholar 

  39. Gao, X., Wang, X., Cai, K., Wang, W., Ju, Q., Yang, X., Wang, H., and Wu, H. (2016) MicroRNA-127 is a tumor suppressor in human esophageal squamous cell carcinoma through the regulation of oncogene FMNL3, Eur. J. Pharmacol., 791, 603–610.

    Article  CAS  PubMed  Google Scholar 

  40. Wurm, A. A., Tenen, D. G., and Behre, G. (2017) The Janus-faced nature of miR-22 in hematopoiesis: is it an oncogenic tumor suppressor or rather a tumor-suppressive oncogene? PLoS Genet., 13, e1006505.

    Article  PubMed  PubMed Central  Google Scholar 

  41. David, C. J., Huang, Y. H., Chen, M., Su, J., Zou, Y., Bardeesy, N., Iacobuzio-Donahue, C. A., and Massague, J. (2016) TGF-beta tumor suppression through a lethal EMT, Cell, 164, 1015–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He, S., and Liang, C. (2015) Frameshift mutation of UVRAG: switching a tumor suppressor to an oncogene in colorectal cancer, Autophagy, 11, 1939–1940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pickard, A., and McCance, D. J. (2015) IGF-binding protein 2–oncogene or tumor suppressor? Front. Endocrinol. (Lausanne), 6, 25.

    Google Scholar 

  44. Toker, A., and Chin, Y. R. (2014) Akt-ing up on SRPK1: oncogene or tumor suppressor? Mol. Cell, 54, 329–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lobry, C., Oh, P., Mansour, M. R., Look, A. T., and Aifantis, I. (2014) Notch signaling: switching an oncogene to a tumor suppressor, Blood, 123, 2451–2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Silipo, M., Gautrey, H., Satam, S., Lennard, T., and Tyson-Capper, A. (2016) How is Herstatin, a tumor suppressor splice variant of the oncogene HER2, regulated? RNA Biol., 9, 1–8.

    Google Scholar 

  47. Beaurivage, C., Champagne, A., Tobelaim, W. S., Pomerleau, V., Menendez, A., and Saucier, C. (2016) SOCS1 in cancer: an oncogene and a tumor suppressor, Cytokine, 82, 87–94.

    Article  CAS  PubMed  Google Scholar 

  48. Liang, J., and Mills, G. B. (2013) AMPK: a contextual oncogene or tumor suppressor? Cancer Res., 73, 2929–2935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zinovyeva, M. V., Kostina, M. B., Chernov, I. P., Kodratyeva, L. G., and Sverdlov, E. D. (2016) KLF5, a new player and new target in the permanently changing set of pancreatic cancer molecular drivers, Russ. J. Bioorg. Chem., 42, 606–611.

    Article  CAS  Google Scholar 

  50. Ji, Z., and Sharrocks, A. D. (2015) Changing partners: transcription factors form different complexes on and off chromatin, Mol. Syst. Biol., 11, 782.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cusanovich, D. A., Pavlovic, B., Pritchard, J. K., and Gilad, Y. (2014) The functional consequences of variation in transcription factor binding, PLoS Genet., 10, e1004226.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Vinogradova.

Additional information

Original Russian Text © T. V. Vinogradova, E. D. Sverdlov, 2017, published in Biokhimiya, 2017, Vol. 82, No. 8, pp. 1154-1162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, T.V., Sverdlov, E.D. PDX1: A unique pancreatic master regulator constantly changes its functions during embryonic development and progression of pancreatic cancer. Biochemistry Moscow 82, 887–893 (2017). https://doi.org/10.1134/S000629791708003X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791708003X

Keywords

Navigation