Abstract
This review considers the interrelation between different types of protein glycation, glycolysis, and the development of amyloid neurodegenerative diseases. The primary focus is on the role of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase in changing the concentration of carbonyl compounds – first and foremost, glyceraldehyde-3-phosphate and methylglyoxal. It has been suggested that various modifications of the enzyme – from the oxidation of the sulfhydryl groups of the active site to glycation with sugars – can lead to its inactivation, which causes a direct increase in glyceraldehyde-3-phosphate concentration and an indirect increase in the content of other aldehydes. This “primary inactivation” of glyceraldehyde-3-phosphate dehydrogenase promotes its glycation with aldehydes, including its own substrate, and a further irreversible decrease in its activity. Such a cycle can lead to numerous consequences – from the induction of apoptosis, which is activated by modified forms of the enzyme, to glycation of amyloidogenic proteins by glycolytic aldehydes. Of particular importance during the inhibition of glyceraldehyde-3-phosphate dehydrogenase is an increase in the content of the glycating compound methylglyoxal, which is much more active than reducing sugars (glucose, fructose, and others). In addition, methylglyoxal is formed by two pathways – in the cascade of reactions during glycation and from glycolytic aldehydes. The ability of methylglyoxal to glycate proteins makes it the main participant in this protein modification. We consider the effect of glycation on the pathological transformation of amyloidogenic proteins and peptides – β-amyloid peptide, α-synuclein, and prions. Our primary focus is on the glycation of monomeric forms of these proteins with methylglyoxal, although most works are dedicated to the analysis of the presence of “advanced glycation end products” in the already formed aggregates and fibrils of amyloid proteins. In our opinion, the modification of aggregates and fibrils is secondary in nature and does not play an important role in the development of neurodegenerative diseases. The glycation of amyloid proteins with carbonyl compounds can be one of the triggers of their transformation into toxic forms. The possible role of glycation of amyloidogenic proteins in the prevention of their modification by ubiquitin and the SUMO proteins due to a disruption of their degradation is separately considered.
Similar content being viewed by others
References
Li, J., Liu, D., Sun, L., Lu, Y., and Zhang, Z. (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective, J. Neurol. Sci., 317, 1–5.
Yang, Y., and Song, W. (2013) Molecular links between Alzheimer’s disease and diabetes mellitus, Neuroscience, 250, 140–150.
Muronetz, V. I., Barinova, K. V., Stroylova, Y. Y., Semenyuk, P. I., and Schmalhausen, E. V. (2017) Glyceraldehyde-3-phosphate dehydrogenase: aggregation mechanisms and impact on amyloid neurodegenerative diseases, Int. J. Biol. Macromol., 100, 55–66.
Vicente Miranda, H., El-Agnaf, O. M. A., and Outeiro, T. F. (2016) Glycation in Parkinson’s disease and Alzheimer’s disease, Mov. Disord., 31, 782–790.
Adav, S. S., and Sze, S. K. (2016) Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling, Mol. Brain, 9, 92.
Verzelloni, E., Pellacani, C., Tagliazucchi, D., Tagliaferri, S., Calani, L., Costa, L. G., Brighenti, F., Borges, G., Crozier, A., Conte, A., and Del Rio, D. (2011) Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites, Mol. Nutr. Food Res., 55 (Suppl. 1), S35–43.
Swiatecka, D., Narbad, A., Ridgway, K. P., and Kostyra, H. (2011) The study on the impact of glycated pea proteins on human intestinal bacteria, Int. J. Food Microbiol., 145, 267–272.
Kellow, N. J., Coughlan, M. T., Savige, G. S., and Reid, C. M. (2014) Effect of dietary prebiotic supplementation on advanced glycation, insulin resistance and inflammatory biomarkers in adults with pre-diabetes: a study protocol for a double-blind placebo-controlled randomized crossover clinical trial, BMC Endocr. Disord., 14, 55.
Opdenakker, G., Proost, P., and Van Damme, J. (2016) Microbiomic and posttranslational modifications as preludes to autoimmune diseases, Trends Mol. Med., 22, 746–757.
Kellow, N. J., and Coughlan, M. T. (2015) Effect of dietderived advanced glycation end products on inflammation, Nutr. Rev., 73, 737–759.
Martins, S. I., Jongen, W. M., and Van Boekel, M. A. (2001) A review of Maillard reaction in food and implications to kinetic modelling, Trends Food Sci. Technol., 11, 364–373.
Zhang, Q., Ames, J. M., Smith, R. D., Baynes, J. W., and Metz, T. O. (2009) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease, J. Proteome Res., 8, 754–769.
Shipanova, I. N., Glomb, M. A., and Nagaraj, R. H. (1997) Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct, Arch. Biochem. Biophys., 344, 29–36.
Rabbani, G., Ahmad, E., Zaidi, N., and Khan, R. H. (2011) pH-Dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white, Cell Biochem. Biophys., 61, 551–560.
Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S., and Khan, R. H. (2012) pH-Induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state, Cell Biochem. Biophys., 62, 487–499.
Vlassara, H., and Palace, M. R. (2002) Diabetes and advanced glycation end-products, J. Intern. Med., 251, 87–101.
Phillips, S. A., and Thornalley, P. J. (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal, Eur. J. Biochem., 212, 101–105.
He, R. Q., Li, Y. G., Wu, X. Q., and Li, L. (1995) Inactivation and conformation changes of the glycated and non-glycated D-glyceraldehyde-3-phosphate dehydrogenase during guanidine-HCl denaturation, Biochim. Biophys. Acta, 1253, 47–56.
He, R. Q., Yang, M. D., Zheng, X., and Zhou, J. X. (1995) Isolation and some properties of glycated D-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, Biochem. J., 309 (Pt. 1), 133–139.
Morgan, P. E., Dean, R. T., and Davies, M. J. (2002) Inactivation of cellular enzymes by carbonyls and proteinbound glycation/glycoxidation products, Arch. Biochem. Biophys., 403, 259–269.
Wentzel, P., Ejdesjo, A., and Eriksson, U. J. (2003) Maternal diabetes in vivo and high glucose in vitro diminish GAPDH activity in rat embryos, Diabetes, 52, 1222–1228.
Muronetz, V., Barinova, K., and Schmalhausen, E. (2016) Glycation of glyceraldehyde-3-phosphate dehydrogenase in the presence of glucose and glyceraldehyde-3-phosphate, J. Int. Soc. Antioxid. Nutr. Health, 3.
Zhao, W., Devamanoharan, P. S., and Varma, S. D. (2000) Fructose induced deactivation of antioxidant enzymes: preventive effect of pyruvate, Free Radic. Res., 33, 23–30.
Hook, D. W., and Harding, J. J. (1997) Inactivation of glyceraldehyde 3-phosphate dehydrogenase by sugars, prednisolone-21-hemisuccinate, cyanate and other small molecules, Biochim. Biophys. Acta, 1362, 232–242.
Lee, H. J., Howell, S. K., Sanford, R. J., and Beisswenger, P. J. (2005) Methylglyoxal can modify GAPDH activity and structure, Ann. N. Y. Acad. Sci., 1043, 135–145.
Asryants, R. A., Kuzminskaya, E. V., Tishkov, V. I., Douzhenkova, I. V., and Nagradova, N. K. (1989) An examination of the role of arginine residues in the functioning of D-glyceraldehyde-3-phosphate dehydrogenase, Biochim. Biophys. Acta, 997, 159–166.
Ray, M., Basu, N., and Ray, S. (1997) Inactivation of glyceraldehyde-3-phosphate dehydrogenase of human malignant cells by methylglyoxal, Mol. Cell. Biochem., 177, 21–26.
Beisswenger, P. J., Howell, S. K., Smith, K., and Szwergold, B. S. (2003) Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes, Biochim. Biophys. Acta, 1637, 98–106.
Du, X., Matsumura, T., Edelstein, D., Rossetti, L., Zsengeller, Z., Szabo, C., and Brownlee, M. (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells, J. Clin. Invest., 112, 1049–1057.
Seidler, N. W., and Yeargans, G. S. (2002) Effects of thermal denaturation on protein glycation, Life Sci., 70, 1789–1799.
Guerrero, E., Vasudevaraju, P., Hegde, M. L., Britton, G. B., and Rao, K. S. (2013) Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease, Mol. Neurobiol., 47, 525–536.
Castellani, R., Smith, M. A., Richey, P. L., and Perry, G. (1996) Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease, Brain Res., 737, 195–200.
Munch, G., Luth, H. J., Wong, A., Arendt, T., Hirsch, E., Ravid, R., and Riederer, P. (2000) Crosslinking of alphasynuclein by advanced glycation end-products–an early pathophysiological step in Lewy body formation? J. Chem. Neuroanat., 20, 253–257.
Dalfo, E., Portero-Otin, M., Ayala, V., Martinez, A., Pamplona, R., and Ferrer, I. (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease, J. Neuropathol. Exp. Neurol., 64, 816–830.
Padmaraju, V., Bhaskar, J. J., Prasada Rao, U. J., Salimath, P. V., and Rao, K. S. (2011) Role of advanced glycation on aggregation and DNA binding properties of α-synuclein, J. Alzheimer’s Dis., 24 (Suppl. 2), 211–221.
Shaikh, S., and Nicholson, L. F. B. (2008) Advanced glycation end products induce in vitro cross-linking of alphasynuclein and accelerate the process of intracellular inclusion body formation, J. Neurosci. Res., 86, 2071–2082.
Chen, L., Wei, Y., Wang, X., and He, R. (2010) Ribosylation rapidly induces alpha-synuclein to form highly cytotoxic molten globules of advanced glycation end products, PLoS One, 5, e9052.
Lee, D., Park, C. W., Paik, S. R., and Choi, K. Y. (2009) The modification of alpha-synuclein by dicarbonyl compounds inhibits its fibril-forming process, Biochim. Biophys. Acta, 1794, 421–430.
Outeiro, T. F., Putcha, P., Tetzlaff, J. E., Spoelgen, R., Koker, M., Carvalho, F., Hyman, B. T., and McLean, P. J. (2008) Formation of toxic oligomeric alpha-synuclein species in living cells, PLoS One, 3, e1867.
Winner, B., Jappelli, R., Maji, S. K., Desplats, P. A., Boyer, L., Aigner, S., Hetzer, C., Loher, T., Vilar, M., Campioni, S., Tzitzilonis, C., Soragni, A., Jessberger, S., Mira, H., Consiglio, A., Pham, E., Masliah, E., Gage, F. H., and Riek, R. (2011) In vivo demonstration that alpha-synuclein oligomers are toxic, Proc. Natl. Acad. Sci. USA, 108, 4194–4199.
Boyd, A. E., Lebovitz, H. E., and Feldman, J. M. (1971) Endocrine function and glucose metabolism in patients with Parkinson’s disease and their alternation by L-DOPA, J. Clin. Endocrinol. Metab., 33, 829–837.
Hu, G., Jousilahti, P., Bidel, S., Antikainen, R., and Tuomilehto, J. (2007) Type 2 diabetes and the risk of Parkinson’s disease, Diab. Care, 30, 842–847.
Xu, Q., Park, Y., Huang, X., Hollenbeck, A., Blair, A., Schatzkin, A., and Chen, H. (2011) Diabetes and risk of Parkinson’s disease, Diab. Care, 34, 910–915.
Arvanitakis, Z., Wilson, R. S., Bienias, J. L., and Bennett, D. A. (2007) Diabetes and parkinsonian signs in older persons, Alzheimer’s Dis. Assoc. Disord., 21, 144–149.
Cereda, E., Barichella, M., Cassani, E., Caccialanza, R., and Pezzoli, G. (2012) Clinical features of Parkinson disease when onset of diabetes came first: a case-control study, Neurology, 78, 1507–1511.
Sandyk, R. (1993) The relationship between diabetes mellitus and Parkinson’s disease, Int. J. Neurosci., 69, 125–130.
Cereda, E., Barichella, M., Pedrolli, C., Klersy, C., Cassani, E., Caccialanza, R., and Pezzoli, G. (2011) Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis, Diab. Care, 34, 2614–2623.
Driver, J. A., Smith, A., Buring, J. E., Gaziano, J. M., Kurth, T., and Logroscino, G. (2008) Prospective cohort study of type 2 diabetes and the risk of Parkinson’s disease, Diab. Care, 31, 2003–2005.
Lu, L., Fu, D.-L., Li, H.-Q., Liu, A.-J., Li, J.-H., and Zheng, G.-Q. (2014) Diabetes and risk of Parkinson’s disease: an updated meta-analysis of case-control studies, PLoS One, 9, e85781.
Ikemoto, S., Takahashi, M., Tsunoda, N., Maruyama, K., Itakura, H., and Ezaki, O. (1996) High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils, Metabolism, 45, 1539–1546.
Morris, J. K., Bomhoff, G. L., Stanford, J. A., and Geiger, P. C. (2010) Neurodegeneration in an animal model of Parkinson’s disease is exacerbated by a high-fat diet, Am. J. Physiol. Regul. Integr. Comp. Physiol., 299, R1082–1090.
Choi, J.-Y., Jang, E.-H., Park, C.-S., and Kang, J.-H. (2005) Enhanced susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in high-fat dietinduced obesity, Free Radic. Biol. Med., 38, 806–816.
Liu, L., Xiong, N., Zhang, P., Chen, C., Huang, J., Zhang, G., Xu, X., Shen, Y., Lin, Z., and Wang, T. (2015) Genetic variants in GAPDH confer susceptibility to sporadic Parkinson’s disease in a Chinese Han population, PLoS One, 10, e0135425.
Vitek, M. P., Bhattacharya, K., Glendening, J. M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K., and Cerami, A. (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease, Proc. Natl. Acad. Sci. USA, 91, 4766–4770.
Choei, H., Sasaki, N., Takeuchi, M., Yoshida, T., Ukai, W., Yamagishi, S.-I., Kikuchi, S., and Saito, T. (2004) Glyceraldehyde-derived advanced glycation end products in Alzheimer’s disease, Acta Neuropathol. (Berl.), 108, 189–193.
Anzai, Y., Hayashi, M., Fueki, N., Kurata, K., and Ohya, T. (2006) Protracted juvenile neuronal ceroid lipofuscinosis–an autopsy report and immunohistochemical analysis, Brain Dev., 28, 462–465.
Rahmadi, A., Steiner, N., and Munch, G. (2011) Advanced glycation end-products as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease, Clin. Chem. Lab. Med., 49, 385–391.
Smith, M. A., Taneda, S., Richey, P. L., Miyata, S., Yan, S. D., Stern, D., Sayre, L. M., Monnier, V. M., and Perry, G. (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology, Proc. Natl. Acad. Sci. USA, 91, 5710–5714.
Smith, M. A., and Perry, G. (1994) Alzheimer disease: an imbalance of proteolytic regulation? Med. Hypotheses, 42, 277–279.
Stolzing, A., Widmer, R., Jung, T., Voss, P., and Grune, T. (2006) Degradation of glycated bovine serum albumin in microglial cells, Free Radic. Biol. Med., 40, 1017–1027.
Gasic-Milenkovic, J., Dukic-Stefanovic, S., Deuther-Conrad, W., Gartner, U., and Munch, G. (2003) Betaamyloid peptide potentiates inflammatory responses induced by lipopolysaccharide, interferon-gamma and “advanced glycation end-products” in a murine microglia cell line, Eur. J. Neurosci., 17, 813–821.
Sasaki, N., Toki, S., Chowei, H., Saito, T., Nakano, N., Hayashi, Y., Takeuchi, M., and Makita, Z. (2001) Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease, Brain Res., 888, 256–262.
Li, X.-H., Du, L.-L., Cheng, X.-S., Jiang, X., Zhang, Y., Lv, B.-L., Liu, R., Wang, J.-Z., and Zhou, X.-W. (2013) Glycation exacerbates the neuronal toxicity of β-amyloid, Cell Death Dis., 4, e673.
Taghavi, F., Habibi-Rezaei, M., Amani, M., Saboury, A. A., and Moosavi-Movahedi, A. A. (2016) The status of glycation in protein aggregation, Int. J. Biol. Macromol., 100, 67–74.
Munch, G., Westcott, B., Menini, T., and Gugliucci, A. (2012) Advanced glycation end-products and their pathogenic roles in neurological disorders, Amino Acids, 42, 1221–1236.
Fonteh, A. N., Harrington, R. J., Tsai, A., Liao, P., and Harrington, M. G. (2007) Free amino acid and dipeptide changes in the body fluids from Alzheimer’s disease subjects, Amino Acids, 32, 213–224.
Salahuddin, P., Rabbani, G., and Khan, R. H. (2014) The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach, Cell. Mol. Biol. Lett., 19, 407–437.
Sasaki, N., Takeuchi, M., Chowei, H., Kikuchi, S., Hayashi, Y., Nakano, N., Ikeda, H., Yamagishi, S., Kitamoto, T., Saito, T., and Makita, Z. (2002) Advanced glycation end products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt–Jakob disease with prion plaques, Neurosci. Lett., 326, 117–120.
Choi, Y.-G., Kim, J.-I., Jeon, Y.-C., Park, S.-J., Choi, E.-K., Rubenstein, R., Kascsak, R. J., Carp, R. I., and Kim, Y.-S. (2004) Nonenzymatic glycation at the N-terminus of pathogenic prion protein in transmissible spongiform encephalopathies, J. Biol. Chem., 279, 30402–30409.
Natale, G., Ferrucci, M., Lazzeri, G., Paparelli, A., and Fornai, F. (2011) Transmission of prions within the gut and towards the central nervous system, Prion, 5, 142–149.
Panza, G., Dumpitak, C., and Birkmann, E. (2010) Influence of the Maillard reaction to prion protein aggregation, Rejuv. Res., 13, 220–223.
Choi, Y.-G., Kim, J.-I., Choi, E.-K., Carp, R.-I., and Kim, Y.-S. (2016) Semi-purification procedures of prions from a prion-infected brain using sucrose has no influence on the nonenzymatic glycation of the disease-associated prion isoform, Biol. Chem., 397, 125–133.
Choi, Y.-G., Shin, H.-Y., Kim, J.-I., Choi, E.-K., Carp, R. I., and Kim, Y.-S. (2016) N(ε) carboxymethyl modification of lysine residues in pathogenic prion isoforms, Mol. Neurobiol., 53, 3102–3112.
Welchman, R. L., Gordon, C., and Mayer, R. J. (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals, Nat. Rev. Mol. Cell Biol., 6, 599–609.
Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., and Goedert, M. (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies, Proc. Natl. Acad. Sci. USA, 95, 6469–6473.
Hasegawa, M., Fujiwara, H., Nonaka, T., Wakabayashi, K., Takahashi, H., Lee, V. M.-Y., Trojanowski, J. Q., Mann, D., and Iwatsubo, T. (2002) Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions, J. Biol. Chem., 277, 49071–49076.
Gomez-Tortosa, E., Newell, K., Irizarry, M. C., Sanders, J. L., and Hyman, B. T. (2000) Alpha-synuclein immunoreactivity in dementia with Lewy bodies: morphological staging and comparison with ubiquitin immunostaining, Acta Neuropathol. (Berl.), 99, 352–357.
Lowe, J., Blanchard, A., Morrell, K., Lennox, G., Reynolds, L., Billett, M., Landon, M., and Mayer, R. J. (1988) Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease, J. Pathol., 155, 9–15.
Manetto, V., Perry, G., Tabaton, M., Mulvihill, P., Fried, V. A., Smith, H. T., Gambetti, P., and Autilio-Gambetti, L. (1988) Ubiquitin is associated with abnormal cytoplasmic filaments characteristic of neurodegenerative diseases, Proc. Natl. Acad. Sci. USA, 85, 4501–4505.
Sampathu, D. M., Giasson, B. I., Pawlyk, A. C., Trojanowski, J. Q., and Lee, V. M.-Y. (2003) Ubiquitination of alpha-synuclein is not required for formation of pathological inclusions in alpha-synucleinopathies, Am. J. Pathol., 163, 91–100.
Tofaris, G. K., Razzaq, A., Ghetti, B., Lilley, K. S., and Spillantini, M. G. (2003) Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function, J. Biol. Chem., 278, 44405–44411.
Nonaka, T., Iwatsubo, T., and Hasegawa, M. (2005) Ubiquitination of alpha-synuclein, Biochemistry, 44, 361–368.
Rott, R., Szargel, R., Haskin, J., Shani, V., Shainskaya, A., Manov, I., Liani, E., Avraham, E., and Engelender, S. (2008) Monoubiquitylation of alpha-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells, J. Biol. Chem., 283, 3316–3328.
Lee, J. T., Wheeler, T. C., Li, L., and Chin, L.-S. (2008) Ubiquitination of alpha-synuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic cell death, Hum. Mol. Genet., 17, 906–917.
Hejjaoui, M., Haj-Yahya, M., Kumar, K. S. A., Brik, A., and Lashuel, H. A. (2011) Towards elucidation of the role of ubiquitination in the pathogenesis of Parkinson’s disease with semisynthetic ubiquitinated α-synuclein, Angew. Chem. Int. Ed. Engl., 50, 405–409.
Meier, F., Abeywardana, T., Dhall, A., Marotta, N. P., Varkey, J., Langen, R., Chatterjee, C., and Pratt, M. R. (2012) Semisynthetic, site-specific ubiquitin modification of α-synuclein reveals differential effects on aggregation, J. Am. Chem. Soc., 134, 5468–5471.
Lewis, Y. E., Abeywardana, T., Lin, Y. H., Galesic, A., and Pratt, M. R. (2016) Synthesis of a bis-thio-acetone (BTA) analogue of the lysine isopeptide bond and its application to investigate the effects of ubiquitination and SUMOylation on α-synuclein aggregation and toxicity, ACS Chem. Biol., 11, 931–942.
Haj-Yahya, M., Fauvet, B., Herman-Bachinsky, Y., Hejjaoui, M., Bavikar, S. N., Karthikeyan, S. V., Ciechanover, A., Lashuel, H. A., and Brik, A. (2013) Synthetic polyubiquitinated α-synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology, Proc. Natl. Acad. Sci. USA, 110, 17726–17731.
Abeywardana, T., Lin, Y. H., Rott, R., Engelender, S., and Pratt, M. R. (2013) Site-specific differences in proteasome-dependent degradation of monoubiquitinated α-synuclein, Chem. Biol., 20, 1207–1213.
Krumova, P., and Weishaupt, J. H. (2013) Sumoylation in neurodegenerative diseases, Cell. Mol. Life Sci., 70, 2123–2138.
Flotho, A., and Melchior, F. (2013) Sumoylation: a regulatory protein modification in health and disease, Annu. Rev. Biochem., 82, 357–385.
Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H.-H., Bossis, G., Urlaub, H., Zweckstetter, M., Kugler, S., Melchior, F., Bahr, M., and Weishaupt, J. H. (2011) Sumoylation inhibits alpha-synuclein aggregation and toxicity, J. Cell Biol., 194, 49–60.
Dorval, V., and Fraser, P. E. (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein, J. Biol. Chem., 281, 9919–9924.
Abeywardana, T., and Pratt, M. R. (2015) Extent of inhibition of α-synuclein aggregation in vitro by SUMOylation is conjugation site-and SUMO isoform-selective, Biochemistry, 54, 959–961.
Kim, Y. M., Jang, W. H., Quezado, M. M., Oh, Y., Chung, K. C., Junn, E., and Mouradian, M. M. (2011) Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation, J. Neurol. Sci., 307, 157–161.
Sirover, M. A. (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control, Biochim. Biophys. Acta, 1810, 741–751.
Kosova, A. A., Khodyreva, S. N., and Lavrik, O. I. (2015) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with apurinic/apyrimidinic sites in DNA, Mutat. Res., 779, 46–57.
Arutyunova, E. I., Danshina, P. V., Domnina, L. V., Pleten, A. P., and Muronetz, V. I. (2003) Oxidation of glyceraldehyde-3-phosphate dehydrogenase enhances its binding to nucleic acids, Biochem. Biophys. Res. Commun., 307, 547–552.
Arutyunova, E. I., Domnina, L. V., Chudinova, A. A., Makshakova, O. N., Arutyunov, D. Y., and Muronetz, V. I. (2013) Localization of non-native D-glyceraldehyde-3-phosphate dehydrogenase in growing and apoptotic HeLa cells, Biochemistry, 78, 91–95.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V. I. Muronetz, A. K. Melnikova, Z. N. Seferbekova, K. V. Barinova, E. V. Schmalhausen, 2017, published in Biokhimiya, 2017, Vol. 82, No. 8, pp. 1138-1153.
Rights and permissions
About this article
Cite this article
Muronetz, V.I., Melnikova, A.K., Seferbekova, Z.N. et al. Glycation, glycolysis, and neurodegenerative diseases: Is there any connection?. Biochemistry Moscow 82, 874–886 (2017). https://doi.org/10.1134/S0006297917080028
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0006297917080028